Parasite glycoconjugates. Part 6. ${ }^{1} \mathrm{C}$ hemical synthesis of phosphorylated penta- and hepta-saccharide fragments of Leishmania major antigenic lipophosphoglycan

A ndrei V. N ikolaev,*, ${ }^{\text {,a }}$ G regory M . W att, ${ }^{\text {a }}$ M ichael A. J. Ferguson ${ }^{\text {b }}$ and J ohn S. Brimacombe ${ }^{\text {a }}$
a D epartment of C hemistry, U niversity of D undee, D undee DD 14 H N , U K
${ }^{\mathrm{b}}$ D epartment of Biochemistry, U niversity of D undee, D undee DD 14 H N, UK

Abstract

The phosphorylated branched oligosaccharides 1 and 2, fragments of the phosphoglycan portion of L eishmania major lipophosphoglycan, have been synthesized using the trichloroacetimidate method for the glycosylation reactions and the phosphoramidite and hydrogenphosphonate methods for phosphorylation.

Introduction

We have recently described chemical syntheses of phosphorylated oligosaccharide fragments ${ }^{1,2}$ and the phosphoglycan chain ${ }^{3}$ of the antigenic lipophosphoglycan (LPG) of Leishmania donovani, a parasitic protozoan organism that causes visceral leishmaniasis. L. major, another species of Leishmania parasites, generally causes a self-limiting skin lesion called oriental sore. The phosphoglycan portion of L. major LPG is an irregular polymer (see Table 1) ${ }^{4,5}$ consisting of β-d-G alp$(1 \rightarrow 4)-\alpha-\mathrm{D}-\mathrm{M}$ anp-phosphate repeating units, where the $3-\mathrm{OH}$ group of D -galactose is in the main randomly substituted with β-d-Galp, β-d-A rap- $(1 \rightarrow 2)-\beta$-d-G alp and β - $(1 \rightarrow 3)$-linked dgalactobiose. In addition, a small proportion of the repeats is substituted with β-d-GIcp-($1 \rightarrow 3$)- β-d-G alp, β-d-A rap- $(1 \rightarrow 2)-\beta$ -d-Galp- $(1 \rightarrow 3)-\beta$-d-Galp and β-($1 \rightarrow 3$)-linked D -galactotriose. Both the proportion of these substituents and the average chain-length of the phosphoglycan in L. major vary during differentiation from the non-infectious procyclic promastigote form (existing in the sand-fly mid-gut) into the highly infectious metacyclic promastigote form that can successfully invade the macrophages of the mammalian host (see Table 1). The β $(1 \rightarrow 3)$-linked D -galactotriose side-chain was found to be responsible for binding procyclic parasites to the gut wall of the sand-fly vector ${ }^{6,7}$ and metacyclic parasites to macrophage cell-surface receptors. ${ }^{8}$ We now report the chemical synthesis of phospho-oligosaccharides 1 and 2 containing the galactotriose side-chain linked to phosphodisaccharide (in 1) and phosphotetrasaccharide (in 2) fragments of the LPG backbone.

Results and discussion

A retrosynthetic analysis of the phosphoheptasaccharide $\mathbf{2}$ showed that it might be prepared from the glycobiosyl Hphosphonate 3 (as a donor of the $\mathrm{Gal}^{\mathrm{e}}-\mathrm{M}$ an ${ }^{\text {b }}$-phosphate fragment) and the corresponding pentasaccharide ($\mathrm{G} \mathrm{al}^{\mathrm{d}}-\mathrm{G} \mathrm{al}^{\mathrm{c}}-\mathrm{G}$ al ${ }^{\mathrm{b}}$ G ala ${ }^{\text {a }}$ - $\mathrm{an}^{\text {a }}$) monohydroxylic compound, which would also give the phosphopentasaccharide 1 on phosphorylation. The linear pentasaccharide ($\mathrm{Gal}^{d}-\mathrm{Gal}{ }^{\mathrm{c}}-\mathrm{Gal}^{\mathrm{b}}-\mathrm{Gal}{ }^{\mathrm{a}}-\mathrm{M}$ an ${ }^{\mathrm{a}}$) can be synthesized by stepwise chain-elongation from the mannoside acceptor $\mathbf{4}$ (for the M an a residue) using the compounds 5,6 and 7 or $\mathbf{8}$ as galactobiosyl and galactosyl donors in the trichloroacetimidate procedure ${ }^{9,10}$

The disaccharide trichloroacetimidate 5, modelling the terminal $\mathrm{Gal}{ }^{\mathrm{d}}-\mathrm{G}$ al ${ }^{\text {c }}$ fragment, could be prepared from the known ${ }^{11}$ disaccharide $\mathbf{1 7}$ (see below). As with previous syntheses of β $(1 \rightarrow 3)$-linked D-galacto-oligosaccharides, ${ }^{12,13}$ the benzyl group

was chosen for the temporary protection of 0-3 of the trichloroacetimidates 6 (donor of the $\mathrm{Gal}^{\mathrm{b}}$ residue) and 7 and 8 (donors of the Gala residue). The chloroacetyl (CA) or tertbutyldiphenylsilyl (TBDPS) group served for the temporary protection of $0-6$ of the donors $\mathbf{7}$ and 8 ; this position is phosphorylated in the oligosaccharides $\mathbf{1}$ and $\mathbf{2}$.
The glycobiosyl H-phosphonate $\mathbf{3}$ has been described ${ }^{2}$ by us recently. M ethyl 2,3,6-tri-O-benzoyl- α-d-mannopyranoside 4 was prepared in 77% yield by selective benzoylation ${ }^{14}$ of methyl α-d-mannopyranoside. The disaccharide trichloroacetimidate 5 was synthesized in 88\% yield from the galactose derivative $17{ }^{11}$ (Scheme 1) by anomeric O -deacetylation, ${ }^{1,2,15}$ with $\mathrm{M} \mathrm{e}_{2} \mathrm{~N} \mathrm{H}$ in acetonitrile, followed by treatment with trichloroacetonitrile in the presence of 1,8 -diazabicyclo[5.4.0]undec-7-ene (D BU). ${ }^{16}$
The galactosyl trichloroacetimidates 6, 7 and 8 were all prepared from 2-(trimethylsilyl)ethyl 3-0-benzyl- β-D-galactopyranoside 9 , which in turn was synthesized by way of stannylidenation ${ }^{17,18}$ of 2 -(trimethylsilyl)ethyl β-D-galactopyranoside ${ }^{19}$ with dibutyltin oxide (DBTO) in methanol, followed by selective benzylation of the 3,4-stannylidene acetal with benzyl bromide in the presence of tetrabutylammonium iodide (TBAI). The galactoside 10 was obtained on conventional benzoylation of compound 9 . Subsequent cleavage ${ }^{19}$ of the 2 -(trimethylsilyl)ethyl (TM S-ethyl) aglycone from the galactoside 10 with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (TFA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treatment of the hemiacetal 14

Table 1 Primary structure of L. major LPG (procyclic and metacyclic promastigote forms) ${ }^{4,5}$

	Procyclic promastigote	M etacyclic promastigote
R	mole\%	mole\%
H	7	15
β-d-G alp- $(1 \rightarrow 3)$	52	31
$\beta \text {-d-A rap- }(1 \rightarrow 2)-\beta \text {-d-G alp- }(1 \rightarrow 3)$	9	45
β-d-G alp- $(1 \rightarrow 3)-\beta$-d-G alp-($1 \rightarrow 3$)	25	6
β-d-GIcp-($1 \rightarrow 3$)- β-d-G alp-($1 \rightarrow 3$)	1	1
β-d-A rap-($1 \rightarrow 2$)- β-d-G alp- $(1 \rightarrow 3)-\beta$-d-G alp- $(1 \rightarrow 3)$	2	3
β-d-G alp-($1 \rightarrow 3$)- β-d-G alp-($1 \rightarrow 3$ - β-d-G alp-($1 \rightarrow 3$)	4	2
n , average number of repeating units per molecule	14	30

with $\mathrm{CCl}_{3} \mathrm{CN}$ in the presence of DBU produced the galactosyl trichloroacetimidate 6 in 95% yield.
To prepare the 6-0-chloroacetyl derivative 7, compound 9 was first 6-0-stannylated by reaction with bis(tributyltin) oxide (BTBTO), followed in turn by selective acylation with chloroacetyl chloride $(\longrightarrow \mathbf{1 1}, 90 \%$) and benzoylation $(\longrightarrow \mathbf{1 2}$, $97 \%)$. The dibenzoate 12 was then deprotected at the anomeric position ($\longrightarrow \mathbf{1 5}$) and converted into the trichloroacetimidate 7 in 69\% yield as described for the TM S-ethyl galactoside 10. Consecutive treatments of compound 9 in pyridine with TBDPS chloride (TBDPSCI) and benzoyl chloride gave the 6-TBD PS ether 13 (84%), which was similarly transformed into the trichloroacetimidate 8 (87%) via the hemiacetal derivative 16.

The structures of the galactosyl α-trichloroacetimidates 5-8 were confirmed by their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R data, which revealed signals characteristic of the trichloroacetimidate group at δ_{H} $8.50-8.60(\mathrm{NH})$ and $\delta_{\mathrm{c}} 90.66-91.26\left(\mathrm{CCl}_{3}\right)$ and 160.12-160.50 ($\mathrm{C}=\mathrm{NH}$). The α-configuration of these derivatives was evident from the characteristic value ($3.0-3.6 \mathrm{~Hz}$) of the ${ }_{\mathrm{H} 1, \mathrm{H} 2}$-coupling constants. Electrospray mass spectra in the positive mode

Scheme 1 Reagents: i, PhCOCI, pyridine; ii, (a) BTBTO, toluene; (b) $\mathrm{CICH}_{2} \mathrm{COCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, TBDPSCI, imidazole, pyridine; iv, TFA$\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1) ; \mathrm{v}, \mathrm{CCl}_{3} \mathrm{CN}$, D BU, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ vi, $\mathrm{M}_{2} \mathrm{NH}$, acetonitrile
[ESM S(+)] of the trichloroacetimidates $\mathbf{5}$ and $\mathbf{6}$ revealed the presence of signals for the corresponding glycosyl cations (m / z 681.1, $\left[\mathrm{M}-\mathrm{CCl}_{3} \mathrm{CONH}\right]^{+}$for 5 and $\mathrm{m} / \mathrm{z} 565.0$, $[\mathrm{M}-$ $\left.\mathrm{CCl}_{3} \mathrm{CONH}\right]^{+}$for 6 , which are likely to arise by the ESionization as shown in equation (1).

The linear pentasaccharide monohydroxylic derivative 32 (shown later in Scheme 3) was assembled by two parallel pathways, one using the $6-0$-chloroacetyl derivative $\mathbf{7}$ and the other the 6-TBDPS ether 8 as the $\mathrm{Gal}{ }^{\text {a }}$ donor. Glycosylation of the mannoside 4 with the trichloroacetimidate $\mathbf{7}$ (Scheme 2) was accomplished in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60^{\circ} \mathrm{C}$ in the presence of trimethylsilyl trifluoromethanesulfonate (TMS triflate) to give the β -

Scheme 2 Reagents: i, TMS triflate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, 2-$ methoxyethanol (or M eOH -ethyl acetate)
($1 \rightarrow 4$)-linked disaccharide 18 (55\%) together with some (18\%) of the α-linked isomer 20. A similar coupling of the mannoside 4 with the trichloroacetimidate $\mathbf{8}$ was less stereoselective, giving the β - and α-linked disaccharides 19 and 21 in yields of 41 and 27%, respectively.

Hydrogenolysis of the disaccharides 18 and 19 over $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ afforded the disaccharide acceptors 22 (96%) and 23 (86\%), respectively, which were each glycosylated with the galactosyl trichloroacetimidate 6. Galactosylation of the 6'0 -chloroacetyl derivative 22 in the presence of TMS triflate furnished the β, β-linked trisaccharide 24 in 74% yield and a small proportion (20\%) of the α, β-linked isomer 26. A nalogous coupling of the $6^{\prime}-0-T B D P S$ derivative $\mathbf{2 3}$ gave a lower yield (44%) of the β, β-linked trisaccharide $\mathbf{2 5}$, as well as the α, β-linked trisaccharide 27 (16\%) and recovered acceptor 23 (18\%).

H ydrogenolysis (as above) of compounds $\mathbf{2 4}$ and $\mathbf{2 5}$ (Scheme 3) afforded the trisaccharide monohydroxylic acceptors 28 and 29, respectively, in reasonable yields. Glycosylation of the trisaccharide 28 with the galactobiose trichloroacetimidate 5 in the presence of TM S triflate resulted in a highly stereoselective formation of the pentasaccharide 30 (68%). The 6'-0-TBDPSprotected pentasaccharide 31 was prepared in 57% yield by coupling the same donor and the acceptor 29 in the presence of triethylsilyl triflate; 25% of the trisaccharide 29 was recovered from this reaction. D echloroacetylation ${ }^{20}$ of compound 30 with thiourea in MeOH gave the monohydroxylic pentasaccharide block 32 (60%), which could also be obtained (64% yield) by desilylation ${ }^{21}$ of the pentasaccharide 31 with tetrabutylammonium fluoride (TBAF) in tetrahydrofuran (THF).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the pentasaccharide derivatives 30-32 revealed characteristic signals for all five monosaccharide residues (see Experimental section and Table 2). The β-configuration of each of the d-galactosyl units fol-

Scheme 3 Reagents: i, $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, 2-methoxyethanol (or M eOH ethyl acetate); ii, TM S triflate (or TES triflate), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}$, MeOH ; iv, TBAF, THF; v, (a) (BnO) $\mathrm{PN}_{2}\left(\mathrm{Pr}^{\mathrm{i}}\right)_{2}$, tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) M CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, (a) $\mathrm{M} \mathrm{e}_{3} \mathrm{CCOCl}$, pyridine; (b) I_{2}, pyridine-water; (c) 1% TFA $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vii, NaOM e, M eOH ; viii, (a) $\mathrm{NaOM} \mathrm{e}, \mathrm{M} \mathrm{eOH}$; (b) $\mathrm{NaOH}, \mathrm{MeOH}$-water
lowed from the characteristic value ($7.5-8.0 \mathrm{~Hz}$) of the J $\mathrm{HI}_{1, \mathrm{H} 2^{-}}$ coupling constants. The molecular mass of compound 31 was ascertained from its $E S(+)$ mass spectrum, wherein the main signal corresponded to the pseudo-molecular ion ($\mathrm{m} / \mathrm{z} 2269.4$, $[\mathrm{M}+\mathrm{H}]^{+}$).
The preparation of the phosphorylated pentasaccharide 1 was accomplished using the phosphoramidite method. 2,23 Phosphitylation of the monohydroxylic compound 32 with dibenzyl N, N-diisopropylphosphoramidite ${ }^{24,25}$ in the presence of 1H-tetrazole, followed by in situ oxidation with 3-chloroperbenzoic acid (MCPBA), afforded the phosphotriester 33 in 89\% yield. Hydrogenolysis of the protected phosphopentasaccharide 33 over $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ and O -deacylation of the product with $0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOM}$ e in methanol-1,4-dioxane at $40^{\circ} \mathrm{C}$ gave the deprotected pentasaccharide 6'-phosphate 1 (70%).
The phosphorylated heptasaccharide $\mathbf{2}$ was prepared using the glycosyl hydrogenphosphonate method. ${ }^{1,2,15}$ Coupling of the disaccharide H -phosphonate 3 and the pentasaccharide acceptor 32 in the presence of trimethylacetyl chloride, followed by oxidation with iodine and dedimethoxytritylation (1\% TFA $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0^{\circ} \mathrm{C}$), gave the protected heptasaccharide phosphodiester 34 (71%). Conventional 0 -deacylation of the latter compound with $0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methanolic sodium methoxide at $1^{\circ} \mathrm{C}$ afforded three UV-active products, which on TLC migrated slightly faster than the pentasaccharide $\mathbf{1}$ and which were presumably partially benzoylated derivatives. It has been observed ${ }^{26,27}$ that the 2-0-acetyl and 2-0-benzoyl groups in 3-0-glycosylated hexopyranosides (as in $\mathrm{Gal}^{\mathrm{a}}, \mathrm{Gal}^{\mathrm{b}}$ and $\mathrm{Gal}{ }^{\mathrm{c}}$) are more stable towards deacylation by mild transesterification due to the absence of vicinal hydroxy groups. Further treatment

Table $2{ }^{13} \mathrm{CNMR}$ data $\left[\delta_{\mathrm{c}}\right.$ in $\mathrm{ppm} ; \mathrm{J}_{\mathrm{c}, \mathrm{p}}$ in Hz (in parentheses)] for oligosaccharides $\mathbf{1}$ and $\mathbf{2}$ (in $\mathrm{D}_{2} \mathrm{O}$) and $\mathbf{3 0} \mathbf{- 3 4}$ (in $\mathrm{CDCl}_{\mathbf{3}}$)

Resid.	A tom	$1^{\text {a }}$	2	$30^{\text {b }}$	$31^{\text {c }}$	32	$33^{\text {d }}$	$34^{\text {a }}$
M an ${ }^{\text {a }}$	C-1	101.74	101.71	98.55	98.43	98.36	98.33	98.07
	C-2	70.62	70.54	70.49	70.70	70.54	70.65	70.89
	C-3	70.62	70.54	69.50	69.40	69.57	69.32	69.38
	C-4	78.42	78.89	73.17	72.85	72.85	73.08	74.32
	C-5	72.26	72.22	69.34	69.13	69.17	68.94	69.12
	C-6	61.68	61.63	62.40	62.67	62.37	62.41	62.38
G al ${ }^{\text {a }}$	C-1	104.06	104.12	101.10	101.15	101.42	100.82	100.78
	C-2	71.30	71.24	71.71	72.10	71.66	71.82	72.26
	C-3	82.86	82.84	76.33	75.86	77.60	75.81	76.51
	C-4	69.32	69.32	69.60	69.57	70.43	69.46	70.09
	C-5	$\begin{aligned} & 75.07 \mathrm{~d} \\ & (8.5) \end{aligned}$	$\begin{aligned} & 74.71 \mathrm{~d} \\ & \text { (8.3) } \end{aligned}$	71.29	73.84	73.67	$\begin{aligned} & 71.96 \mathrm{~d} \\ & (9.0) \end{aligned}$	$\begin{aligned} & 72.26 \mathrm{~d} \\ & (7.5) \end{aligned}$
	C-6	$\begin{aligned} & 64.27 \mathrm{~d} \\ & (5.1) \end{aligned}$	$\begin{aligned} & \text { 65.92d } \\ & (4.6) \end{aligned}$	63.15	60.12	59.39	63.83 br	61.36 br
G al ${ }^{\text {b }}$	C-1	105.14	105.18	100.89	100.88	100.78	100.77	100.70
	C-2	71.43	71.40	71.99	72.61	71.87	72.06	72.49
	C-3	83.16	83.21	75.63	75.81	75.59	75.65	75.60
	C-4	69.60	69.52	69.69	69.57	69.72	69.46	69.95
	C-5	75.89	75.88	71.64	71.51	71.59	71.55	72.15
	C-6	62.07	62.07	62.40	62.11	62.37	62.09	62.53
G al ${ }^{\text {c }}$	C-1	105.14	105.28	100.99	101.06	100.91	100.96	100.87
	C-2	71.43	71.40	71.05	71.18	70.98	71.04	70.89
	C-3	83.16	83.21	74.73	74.37	74.73	74.70	75.60
	C-4	69.60	69.52	68.77	68.96	68.72	68.77	68.69
	C-5	75.89	75.88	71.37	71.51	71.33	71.36	71.23
	C-6	62.07	62.07	61.91	62.11	61.84	61.91	61.73
G ald	C-1	105.42	105.52	100.12	99.95	100.08	100.05	99.78
	C-2	72.26	72.15	68.00	68.09	67.98	67.99	67.92
	C-3	73.74	73.68	70.40	70.60	70.43	70.47	70.41
	C-4	69.77	69.75	66.43	66.55	66.40	66.43	66.35
	C-5	76.24	76.25	70.34	70.44	70.31	70.34	70.23
	C-6	62.17	62.14	60.73	60.87	60.68	60.74	60.44
$\mathrm{Man}{ }^{\text {b }}$	C-1		$\begin{aligned} & 97.16 \mathrm{~d} \\ & (4.6) \end{aligned}$					93.42 br
	C-2		$\begin{aligned} & \text { 71.13d } \\ & (8.3) \end{aligned}$					$\begin{aligned} & 70.80 \mathrm{~d} \\ & (8.9) \end{aligned}$
	C-3		69.82					69.21
	C-4		76.99					72.72
	C-5		73.68					69.63
	C-6		61.34					62.61
G al ${ }^{\text {e }}$	C-1		104.24					100.12
	C-2		72.15					70.23
	C-3		73.68					71.86
	C-4		69.82					68.43
	C-5		76.56					74.54
	C-6		62.34					60.16
$\mathrm{CH}_{3} \mathrm{CO}$	CH_{3}			$19.84-20.70$	$20.03-20.70$	19.73-20.61	19.83-20.66	19.76-20.47
	$\mathrm{C}=0$			$169.02-170.24$	169.13-170.32	168.90-170.12	169.03-170.25	168.93-170.24
$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} \\ & \mathrm{C}_{6} \mathrm{H}_{5} \end{aligned}$	$\mathrm{C}=0$			163.92-165.59	163.65-165.89	164.03-166.04	163.56-165.33	163.45-166.19
				$\begin{aligned} & \text { 128.00-129.98, } \\ & 132.60-133.42 \end{aligned}$	$\begin{aligned} & 127.61-130.44 \\ & 132.58-133.31 \end{aligned}$	$\begin{aligned} & \text { 127.92-130.15, } \\ & \text { 132.44-133.27 } \end{aligned}$	$\begin{aligned} & \text { 127.74-130.02, } \\ & \text { 132.72-133.19, } \end{aligned}$	$\begin{aligned} & \text { 127.90-129.84, } \\ & \text { 132.19-133.44 } \end{aligned}$
					$\begin{aligned} & \text { 132.58-133.31, } \\ & 135.63,135.69 \end{aligned}$		$\begin{aligned} & \text { 132.72-133.19, } \\ & 135.39 \end{aligned}$	132.19-133.44
$\mathrm{CH}_{3} \mathrm{O}$		56.0	56.0	55.33	55.31	55.20	55.29	55.07

${ }^{\text {a }}$ A dditional signals of $\mathrm{Et}_{3} \mathrm{NH}^{+}\left[\delta_{\mathrm{c}} 9.25-9.45\left(\mathrm{CH}_{3}\right)\right.$ and $\left.\delta_{\mathrm{c}} 45.45-47.91\left(\mathrm{CH}_{2}\right)\right]$ were present. ${ }^{\mathrm{b}} \mathrm{A}$ dditional signals of $\mathrm{CICH}_{2} \mathrm{CO}^{2}\left[\delta_{\mathrm{c}} 40.20(\mathrm{CICH})\right.$ and $\left.\delta_{\mathrm{c}} 166.69(\mathrm{CO})\right]$ were present. ${ }^{\text {c }}$ A dditional signals of $\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{CSi}\left[\delta_{\mathrm{c}} 18.82(\mathrm{C})\right.$ and $\left.\delta_{\mathrm{c}} 26.60\left(\mathrm{CH}_{3}\right)\right]$ were present. ${ }^{\text {d }}$ A dditional signals of two $\mathrm{PhCH}\left(\delta_{\mathrm{c}}\right.$ 69.11 and $69.32,2 \mathrm{~d}, \mathrm{~J}_{\mathrm{c}, \mathrm{p}}=4.5 \mathrm{~Hz}$) were present.
of these products with $1 \% \mathrm{NaOH}$ in aq. methanol gave the deprotected heptasaccharide $\mathbf{2}$ in 75% yield and a small proportion (22\%) of the pentasaccharide $\mathbf{1}$, which were isolated by ionexchange chromatography. Similar partial cleavage of glycosyl phosphodiester linkages under basic conditions has been reported recently. ${ }^{28}$

NMR spectroscopic and mass spectrometric data were used to confirm the structures of compounds $\mathbf{1 , 2 , 3 3}$ and $\mathbf{3 4}$. Signals characteristic of all five (for the pentasaccharides 1 and 33) and all seven (for the heptasaccharides 2 and 34) monosaccharide residues are present in the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ N M R spectra (see Table 2 and Experimental section). The ${ }^{31}$ P N M R data are characteristic of the deprotected phosphomonoester $1\left(\delta_{\mathrm{p}} 1.78\right)$ and phosphodiester $2\left(\delta_{\mathbf{p}}-1.28\right)$ and of the protected phosphotriester 33 ($\delta_{\mathrm{P}}-3.69$).
The presence of the ($1 \rightarrow 6$)-phosphodiester linkage in the heptasaccharide 2 and the C-6' position of the phosphate
group in the pentasaccharide 1 were confirmed by ${ }^{13} \mathrm{C}$ NMR spectroscopy. The C-5 and C-6 signals of the G ala unit (in both spectra) and $\mathrm{C}-1$ and $\mathrm{C}-2$ signals of the M an ${ }^{\mathrm{b}}$ unit (in the spectrum of the heptasaccharide 2) were shifted as a result of the α - and β-effects of phosphorylation and were coupled with phosphorus. The molecular masses of the oligosaccharides 1 and $\mathbf{2}$ were confirmed by ES(-) mass spectrometry. The main signals in the spectra corresponded to the pseudo-molecular ions for the pentasaccharide phosphomonoester $1(\mathrm{~m} / \mathrm{z} 921.0$, $\left[\mathrm{M}-2 \mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}$) and the heptasaccharide phosphodiester $\mathbf{2}$ (m / z 1244.9, $\left[\mathrm{M}-\mathrm{NH}_{3}-\mathrm{H}\right]^{-}$).

Experimental

General procedures

M ps were determined on a Reichert hot-plate apparatus and are uncorrected. Optical rotations were measured with a

Perkin-Elmer 141 polarimeter; $[\alpha]_{\mathrm{D}}$-values are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. NMR spectra (${ }^{1} \mathrm{H}$ at 200 and 500 MHz , ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ at 50.3 and 125 M Hz , and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ at 81 and 202.5 MHz) were recorded with Bruker AM-200 and AM-500 spectrometers for solutions in CDCl_{3}, unless otherwise indicated. Chemical shifts (δ in ppm) are given relative to those for $\mathrm{M}_{4} \mathrm{Si}$ (for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and external aq. $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (for ${ }^{31} \mathrm{P}$); J-values are given in Hz . ES mass spectra were recorded with a VG Quattro system (VG Biotech, UK). TLC was performed on Polygram Sil G/U V_{254} (M acherey-N agel, G ermany) with A , toluene-ethyl acetate (19:1); B , toluene-ethyl acetate (9:1); C, toluene-ethyl acetate (3:1); D, toluene-ethyl acetate (1:1); E, chloroform-methanol (19:1); and F, chloroform-methanolwater ($10: 10: 3$) as developers and detection under UV light or by charring with sulfuric acid-water-ethanol ($15: 85: 5$). Flashcolumn chromatography (FCC) was performed on K ieselgel 60 ($0.040-0.063 \mathrm{~mm}$) (M erck). Dichloromethane, acetonitrile and pyridine (for the H -phosphonate condensation) were freshly distilled from CaH_{2}. Solutions worked up were concentrated under reduced pressure at $<40^{\circ} \mathrm{C}$.

M ethyl 2,3,6-tri-O-benzoyl- α-D-mannopyranoside 4

To a stirred and cooled ($-40^{\circ} \mathrm{C}$) solution of methyl α-Dmannopyranoside ($3.88 \mathrm{~g}, 20 \mathrm{mmol}$) in pyridine ($160 \mathrm{~cm}^{3}$) was added dropwise benzoyl chloride ($7.2 \mathrm{~cm}^{3}, 62 \mathrm{mmol}$) over a period of 20 min . The temperature was increased to $20^{\circ} \mathrm{C}$ for 3 h, and the mixture was stirred overnight, whereafter most of the pyridine was evaporated off under reduced pressure and chloroform ($200 \mathrm{~cm}^{3}$) was added to the residue. The resulting solution was washed successively with saturated aq. NaHCO_{3} and water, dried ($\mathrm{M} \mathrm{SSO}_{4}$), and concentrated. FCC (solvent B) of the residue gave the tribenzoate $4(7.77 \mathrm{~g}, 77 \%)$ as a syrup; $[a]_{D}^{22}+1.4$ (c 1, CHCl_{3}) [lit., $\left.{ }^{14}-6.5\left(\mathrm{c} 0.93, \mathrm{CHCl}_{3}\right)\right] ; \mathrm{R}_{\mathrm{f}} 0.12$ (solvent A); $\delta_{\mathrm{H}} 3.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ он $, 4.4,4-\mathrm{OH}), 3.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.09(1$ H, ddd, J $5,6 \mathrm{a} 2.5,5-\mathrm{H}), 4.29\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=9.5,4-\mathrm{H}\right)$, $4.66\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{6,6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right), 4.90\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5,6 \mathrm{~b}} 4.0,6-\mathrm{H}^{\mathrm{b}}\right.$),
 ($1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}$) and $7.28-8.14(15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}) ; \delta_{\mathrm{c}} 55.2$ $\left(\mathrm{OCH}_{3}\right), 63.4(\mathrm{C}-6), 66.1(\mathrm{C}-4), 70.4(\mathrm{C}-2), 71.0(\mathrm{C}-5), 72.5$ (C-3), 98.6 (C-1), 128.29-129.87 and 133.12-133.28 (Ph) and 165.31-166.80 (PhCO_{2}).

2,3,4,6-Tetra-0-acetyl- β-d-galactopyranosyl-($1 \rightarrow 3$)-4,6-di-0-

 acetyl-2-0-benzoyl- α-D-galactopyranosyl trichloroacetimidate 5 To a cooled ($-15^{\circ} \mathrm{C}$) and stirred solution of the disaccharide derivative $17^{11}(300 \mathrm{mg}, 0.41 \mathrm{mmol})$ in dry acetonitrile $\left(4 \mathrm{~cm}^{3}\right)$ was added dimethylamine ($0.16 \mathrm{~cm}^{3}, 2.43 \mathrm{mmol}$), and the reaction was allowed to proceed at room temperature for 1-2 h, whereupon TLC (solvent D) showed the formation of one product ($R_{f} 0.43$; corresponding hemiacetal derivative). The mixture was concentrated and toluene was evaporated off from the residue, which was taken up in dichloromethane ($4 \mathrm{~cm}^{3}$). The solution was stirred under nitrogen and treated with $\mathrm{CCl}_{3} \mathrm{CN}\left(1.5 \mathrm{~cm}^{3}, 15 \mathrm{mmol}\right)$ and DBU ($0.068 \mathrm{~cm}^{3}, 0.45 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ for 2 h and then concentrated. FCC of the residue (solvent D) gave the galactobiosyl trichloroacetimidate 5 (303 mg , 88%) as an amorphous solid; $[a]_{\mathrm{D}}^{20}+71$ (c $1.25, \mathrm{CHCl}_{3}$); $\mathrm{R}_{\mathrm{f}} 0.61$ (solvent D); $\delta_{\mathrm{H}} 1.51,1.85,1.99,2.02,2.10$ and $2.13(18 \mathrm{H}, 6 \times \mathrm{s}$, $6 \times \mathrm{AC}), 3.79-4.26\left(5 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and 6 - and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.30-4.45(2$ $\mathrm{H}, \mathrm{m}, 3-\mathrm{and} 5-\mathrm{H}), 4.62\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1,2} 8.1,1^{\prime}-\mathrm{H}\right), 4.75(1 \mathrm{H}$, dd, $\left.\mathrm{J}_{2^{\prime}, 3^{\prime}} 10.5,3^{\prime}-\mathrm{H}\right), 5.01\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.26\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3^{\prime} \cdot 4^{\prime}} 2.9\right.$, $\left.4^{\prime}-\mathrm{H}\right), 5.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3,4} 3.2,4-\mathrm{H}\right), 5.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,310.5,2-\mathrm{H}$), $6.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}, 2 \mathrm{3} .6,1-\mathrm{H}), 7.35-8.00(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $8.60(1 \mathrm{H}$, s, NH); $\delta_{\mathrm{c}} 20.06,20.52$ and 20.71 (M eCO), 61.24 (C-6'), 62.24 (C-6), 65.81 (C-4), 66.74 (C-4'), 68.57 (C-2'), 69.23 (C-2), 70.04 (C-5), 70.67 ($\mathrm{C}-3^{\prime}$), $70.85\left(\mathrm{C}-5^{\prime}\right), 73.10(\mathrm{C}-3), 90.97\left(\mathrm{CCl}_{3}\right)$, 93.88 (C-1), 101.48 (C-1'), 128.27-129.73 and 133.82 (Ph), $160.36(\mathrm{C}=\mathrm{NH}), 165.25\left(\mathrm{PhCO}_{2}\right)$ and 168.02-171.50 $\left(\mathrm{M} \mathrm{eCO}_{2}\right)$; ESM S(+) data: m/z 681.1 (100%, $\left[\mathrm{M}-\mathrm{CCl}_{3} \mathrm{CONH}^{+}\right.$) (C $\mathrm{C}_{33^{-}}$ $\mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{NO}_{18}$ requires $\mathrm{M}, 841.12$).2-(Trimethylsilyl)ethyl 3-0-benzyl- β-D - galactopyranoside 9
A mixture of 2-(trimethylsilyl)ethyl β-d-galactopyranoside ${ }^{19}$ ($6.62 \mathrm{~g}, 23.8 \mathrm{mmol}$) and DBTO ($6.22 \mathrm{~g}, 25 \mathrm{mmol}$) in anhydrous methanol $\left(250 \mathrm{~cm}^{3}\right)$ was heated under reflux for 2 h , after which time the reactants had completely dissolved. The methanol was then evaporated off. The resulting syrup was dissolved in anhydrous toluene ($250 \mathrm{~cm}^{3}$), TBAI ($9.23 \mathrm{~g}, 25 \mathrm{mmol}$) and benzyl bromide ($3 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) were added, and the mixture was boiled for 3 h ; TLC (solvent C) then showed that only traces of starting material remained. The mixture was concentrated and the major product was isolated by column chromatography ($4: 1$ toluene-ethyl acetate) as a syrup (6.36 g , 72%), which crystallized on storage. A fter recrystallization from diethyl ether-hexane, the monobenzylated derivative 9 had $\mathrm{mp} 74^{\circ} \mathrm{C}$; $[a]_{\mathrm{o}}^{20}-11$ (c $1, \mathrm{CHCl}_{3}$) (Found: $\mathrm{C}, 58.2 ; \mathrm{H}, 8.0$. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Si}$ requires C, $58.35 ; \mathrm{H}, 8.2 \%$); $\delta_{\mathrm{H}} 0.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{e}_{3} \mathrm{Si}\right)$, $1.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e} 3\right.$), $3.42\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3,4} 3.5,3-\mathrm{H}\right), 3.50$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{SiM} \mathrm{e}_{3}$), $3.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,310.5,2-\mathrm{H}$), 3.714.07 ($5 \mathrm{H}, \mathrm{m}, 4-$ and $5-\mathrm{H}, 6-\mathrm{H}_{2}$ and $\mathrm{CHCH}_{2} \mathrm{SiM}_{3}$), 4.25 (1 $\left.\mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.8,1-\mathrm{H}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.22-7.43(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}-1.30\left(\mathrm{M} \mathrm{e}_{3} \mathrm{Si}\right), 18.34\left(\mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 62.40(\mathrm{C}-6)$, 67.11 (C-4), $67.51\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 71.08\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.17$ (C-2), 74.30 (C-5), 80.24 (C-3), 102.69 (C-1) and 128.03-128.71 and $137.76(\mathrm{Ph})$.

2-(Trimethylsilyl)ethyl 2,4,6-tri-0-benzoyl-3-0-benzyl- β-Dgalactopyranoside 10

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of compound $9(2.81 \mathrm{~g}$, 7.58 mmol) in pyridine ($30 \mathrm{~cm}^{3}$) was added benzoyl chloride ($5.3 \mathrm{~cm}^{3}, 45.5 \mathrm{mmol}$), whereafter the reaction mixture was allowed to attain room temperature and was stirred for a further 2 h ; TLC (solvent B) then showed the absence of any starting material. The mixture was diluted with $\mathrm{CHCl}_{3}\left(100 \mathrm{~cm}^{3}\right)$ and washed in turn with saturated aq. NaHCO_{3} and water. A fter drying $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, the solvents were evaporated off and the residue was purified by FCC ($15: 1$ toluene-ethyl acetate) to give the benzoylated galactoside 10 ($4.2 \mathrm{~g}, 81 \%$) as an amorphous solid; $[a]_{D}^{20}+76\left(\mathrm{C} 1, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{f}} 0.43$ (solvent A) (Found: C, $68.75 ; \mathrm{H}, 6.0 . \mathrm{C}_{39} \mathrm{H}_{42} \mathrm{O}_{9} \mathrm{Si}$ requires $\mathrm{C}, 68.6 ; \mathrm{H}, 6.2 \%$); $\delta_{\mathrm{H}} 0.00$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 1.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 3.67$ and $4.10(2 \mathrm{H}$, $2 \times \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e} 3$), $3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,310.0,3-\mathrm{H}), 4.19(1 \mathrm{H}$, br t, $\left.\mathrm{J}_{5,6} 7.0,5-\mathrm{H}\right), 4.49-4.86\left(5 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 6-\mathrm{H}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, 5.63 (1 H , dd, J ${ }_{1,2} 7.5,2-\mathrm{H}$), $6.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3,4} 3.0,4-\mathrm{H}\right.$) and $7.10-$ $8.32(20 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ph}) ; \delta_{\mathrm{c}}-1.44\left(\mathrm{M} \mathrm{e} \mathrm{S}_{3}\right)$, $18.17\left(\mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}{ }_{3}\right)$, 62.75 (C-6), $66.77(\mathrm{C}-4), \quad 67.54\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), \quad 71.00$ ($\mathrm{CH}_{2} \mathrm{Ph}$), 71.38 ($2 \mathrm{C}, \mathrm{C}-2+-5$), 77.2 ($\mathrm{C}-3$), 101.06 ($\mathrm{C}-1$), $127.75-130.66,133.08,133.52$ and $137.35(\mathrm{Ph})$ and $165.12-$ $166.38\left(\mathrm{PhCO}_{2}\right)$.

2-(Trimethylsilyl)ethyl 3-0-benzyl-6-0 -chloroacetyl- β-dgalactopyranoside 11

The 3-0-benzyl derivative 9 ($1.85 \mathrm{~g}, 5.0 \mathrm{mmol}$) and ВТВТО ($1.27 \mathrm{~cm}^{3}, 2.5 \mathrm{mmol}$) in anhydrous toluene ($200 \mathrm{~cm}^{3}$) were heated under reflux in a D ean-Stark apparatus (to remove water) for 1.5 h before the reaction mixture was concentrated. The residue was dissolved in a minimal amount of dichloromethane, and chloroacetyl chloride ($0.44 \mathrm{~cm}^{3}, 5.5 \mathrm{mmol}$) was added to the stirred solution at $0^{\circ} \mathrm{C}$; TLC (solvent C) after 40 min showed no trace of the starting material. The reaction mixture was concentrated and then coevaporated with toluene. FCC (4:1 toluene-ethyl acetate) of the residue gave the chloroacetyl derivative 11 ($2.01 \mathrm{~g}, 90 \%$) as a syrup; $[a]_{0}^{20} 0$ (c 1, CHCl_{3}); $\delta_{\mathrm{H}} 0.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{Si}\right), 1.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 2.73$ and $2.83(2 \mathrm{H}, 2 \times \mathrm{br}, 2 \times \mathrm{OH}), 3.42\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3,4} 3.0,3-\mathrm{H}\right)$, $3.60\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}+\mathrm{CHCH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 9.5,2-\mathrm{H}\right)$, $3.90(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}), 3.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 4.05(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 4.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,27.5,1-\mathrm{H}), 4.41\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 4.74(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.22-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}-1.61\left(\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{Si}\right)$, $17.97\left(\mathrm{CH}_{2} \mathrm{SiM}_{3}\right), 40.52\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 64.54(\mathrm{C}-6), 66.18(\mathrm{C}-4)$, $67.09\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e} \mathrm{e}_{3}\right), 70.64(\mathrm{C}-5), \quad 71.63\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.07$
(C-2), 79.84 (C-3), 102.21 (C-1), 127.76-128.39 and 137.50 (Ph) and $166.93\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CI}\right)$.

2-(T rimethylsilyl)ethyl 2,4-di-0-benzoyl-3-0-benzyl-6-0 chloroacetyl- β-D-galactopyranoside 12

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of the chloroacetate 11 ($0.12 \mathrm{~g}, 0.28 \mathrm{mmol}$) dissolved in a minimal amount of dichloromethane were added pyridine ($1 \mathrm{~cm}^{3}$) and benzoyl chloride ($0.39 \mathrm{~cm}^{3}, 3.36 \mathrm{mmol}$), and the reaction mixture was stirred at room temperature for 1 h ; TLC (solvent B) then showed no trace of the starting material. The reaction mixture was diluted with chloroform ($50 \mathrm{~cm}^{3}$) and the resulting solution was washed in turn with ice-water, saturated aq. NaHCO_{3}, and water. A fter drying ($\mathrm{M} \mathrm{gSO}_{4}$), the solvents were evaporated off and the residue was subjected to FCC (15:1 toluene-ethyl acetate) to give the dibenzoate 12 ($0.18 \mathrm{~g}, 97 \%$) as an amorphous solid; $[a]_{0}^{20}+74$ (c 1.6, CHCl_{3}) (Found: C, 62.8; $\mathrm{H}, 6.1 . \mathrm{C}_{34} \mathrm{H}_{39} \mathrm{ClO}{ }_{9} \mathrm{Si}$ requires $\mathrm{C}, 62.3 ; \mathrm{H}, 6.0 \%$); $\delta_{\mathrm{H}} 0.00$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right)$, $0.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 3.66(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{2} \mathrm{SiM} \mathrm{e}_{3}$), $3.89\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{3,4} 3.0,3-\mathrm{H}\right), 4.09(2 \mathrm{H}, \mathrm{m}, 5-$ $\mathrm{H}+\mathrm{CHCH}_{2} \mathrm{SiM} \mathrm{e}_{3}$), $4.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.46(2 \mathrm{H}, \mathrm{m}, 6-$ H_{2}), 4.57 and $4.78\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 12.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.71(1 \mathrm{H}, \mathrm{d}$, $\left.\int_{1,2} 7.8,1-H\right), 5.62\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 10.0,2-\mathrm{H}\right), 5.90(1 \mathrm{H}, \mathrm{d}, 4-$ H) and $7.10-8.28$ ($15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}$); $\delta_{\mathrm{c}}-1.61\left(\mathrm{M} \mathrm{e}_{3} \mathrm{Si}\right), 17.82$ $\left(\mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 40.50\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 63.76(\mathrm{C}-6), 66.42(\mathrm{C}-4), 67.36$ ($\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}$), 70.81 ($2 \mathrm{C}, \mathrm{C}-2+\mathrm{CH}_{2} \mathrm{Ph}$), 71.04 (C-5), 76.04 ($\mathrm{C}-3$), 100.82 ($\mathrm{C}-1$), 127.59-130.42, 132.93-134.46 and 137.05 $(\mathrm{Ph}), 165.02$ and $165.81\left(\mathrm{CO}_{2} \mathrm{Ph}\right)$ and $166.82\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ Compound $\mathbf{1 2}$ can be made by a one-pot procedure from the TM S-ethyl galactoside 9 using toluene as the solvent for all three steps.

2-(T rimethylsilyl)ethyl 2,4-di-0-benzoyl-3-0-benzyl-6-0 -(tert-butyldiphenyIsilyl)- β-D-galactopyranoside 13

To a solution of the galactoside $9(2.51 \mathrm{~g}, 6.7 \mathrm{mmol})$ in pyridine ($20 \mathrm{~cm}^{3}$) were added imidazole ($1.0 \mathrm{~g}, 14.7 \mathrm{mmol}$) and TBD PSCI ($2.0 \mathrm{~cm}^{3}, 7.7 \mathrm{mmol}$), and the mixture was set aside at room temperature for 18 h ; TLC (solvent C) then revealed that only traces of the starting material remained. The reaction mixture was stirred, cooled $\left(0^{\circ} \mathrm{C}\right)$, and treated with benzoyl chloride ($3.5 \mathrm{~cm}^{3}, 30 \mathrm{mmol}$), whereafter stirring was continued at room temperature for 16 h . Work-up as described for the tribenzoate 10 gave the 6-0-silylated derivative 13 ($4.66 \mathrm{~g}, 84 \%$); $\mathrm{mp} 131-132^{\circ} \mathrm{C}$ (from diethyl ether-hexane); $[a]_{\mathrm{D}}^{22}+78$ (c 1, CHCl_{3}) (Found: C, 70.85; $\mathrm{H}, 6.9 . \mathrm{C}_{48} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Si}_{2}$ requires $\mathrm{C}, 70.55$; $\mathrm{H}, 6.9 \%$); $\delta_{\mathrm{H}} 0.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{Si}\right), 0.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 1.15$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}$), 3.61 and $4.09\left(2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiM}_{3}\right.$), 3.90 $\left(4 \mathrm{H}, \mathrm{m}, 3-5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}_{2}\right), 4.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,27.8,1-\mathrm{H}), 4.69$ and 4.88 ($2 \mathrm{H}, \mathrm{AB}$ q , J 12.8, CH ${ }_{2} \mathrm{Ph}$), $5.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}, 310.0,2-\mathrm{H}$), 6.09 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 3,4 $3.0,4-\mathrm{H}$) and 7.18-8.30 ($25 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{Ph}$); δ_{c} $-1.39(\mathrm{M} \mathrm{e} 3 \mathrm{Si}), 18.11\left(\mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), 19.19\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 26.83\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right)$, $61.82(\mathrm{C}-6), \quad 66.39(\mathrm{C}-4), \quad 67.37 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right), \quad 70.86$ ($\mathrm{CH}_{2} \mathrm{Ph}$), 71.66 (C-2), 74.03 (C-5), 76.52 (C-3), 101.12 (C-1), $127.75-130.22,133.01,133.21,135.61,135.69$ and 137.68 (Ph), 165.29 and $165.87\left(\mathrm{CO}_{2} \mathrm{Ph}\right)$.

2,4,6-Tri-0 -benzoyl-3-0 -benzyl- α, β-d-galactopyranose 14

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of compound 10 (550 $\mathrm{mg}, 0.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added TFA ($6 \mathrm{~cm}^{3}$) and the reaction mixture was left for 25 min at $0^{\circ} \mathrm{C}$, whereafter a mixture of toluene ($30 \mathrm{~cm}^{3}$) and ethyl acetate ($15 \mathrm{~cm}^{3}$) was added. The solvents were then removed under reduced pressure, and toluene was evaporated off twice from the residue (to remove traces of TFA) to give the hemiacetal derivative 14 (455 $\mathrm{mg}, 97 \%$) as an amorphous solid, which ${ }^{1} \mathrm{H}$ N M R spectroscopy revealed to contain the α - and β-anomer in the ratio of 2.5:1, respectively; $\left.[a]_{\mathrm{D}}^{25}+109.5(\mathrm{c} \mathrm{1,} \mathrm{CHCl})_{3}\right) ; \mathrm{R}_{\mathrm{f}} 0.14$ (solvent A); $\delta_{\mathrm{H}^{-}}$ (inter alia) 3.88 (dd, J ${ }_{3.4} 3.0,3-H \beta$), 4.12 (t, J ${ }_{5,6} 6.0,5-H \beta$), 4.28 (dd, J 3.4 3.0, $3-\mathrm{H} \alpha$), 4.30-4.78 (m, 5-H α and $6-\mathrm{H}_{2}$), $4.69(2 \mathrm{H}$, $\mathrm{m}, \mathrm{J} 12.0, \mathrm{CH}_{2} \mathrm{Ph}$), 4.82 ($\mathrm{d}, \mathrm{J} \mathrm{I}_{1,2} 8.0,1-\mathrm{H} \beta$), 5.43 (dd, J $2,310.3$,

2-H β), 5.48 (dd, J $\left.{ }_{2,3} 10.3,2-H \alpha\right), 5.75\left(d, J_{1,2} 3.5,1-H \alpha\right), 5.93(d$, $4-\mathrm{H} \beta$) and 5.99 ($\mathrm{d}, 4-\mathrm{H} \alpha$); δ_{c} (inter alia) 62.8 (C-6 β), 63.0 (C- 6α), 68.2 (C-4 α), $70.0(\mathrm{C}-4 \beta+\mathrm{C}-5 \alpha), 71.1(\mathrm{C}-2 \alpha), 71.4$ (C-5 3), 71.5 ($\mathrm{CH}_{2} \mathrm{Ph}$), 72.7 (C-3 α), 74.8 ($\mathrm{C}-2 \beta$), $76.0(\mathrm{C}-3 \beta), 91.0(\mathrm{C}-1 \alpha)$ and 96.7 (C-1 β).

2,4-D i- 0 -benzoyl-3-0-benzyl-6-0 -chloroacetyl- α, β-D-galactopyranose 15

To a stirred solution of compound $12(2.0 \mathrm{~g}, 3.0 \mathrm{mmol})$ in dichloromethane ($10 \mathrm{~cm}^{3}$) at room temperature was added TFA $\left(20 \mathrm{~cm}^{3}\right)$ and the reaction mixture left for 30 min , whereafter a mixture of toluene ($120 \mathrm{~cm}^{3}$) and ethyl acetate ($60 \mathrm{~cm}^{3}$) was added. A fter processing as described for compound 14, the resulting syrup ($1.7 \mathrm{~g}, 99.9 \%$) was shown by ${ }^{1} \mathrm{H}$ N M R spectroscopy to contain the α - and β-anomer of the chloroacetyl derivative 15 in the ratio of $2.5: 1$, respectively; $[a]_{0}^{22}+7$ (c 1, CHCl_{3}); δ_{H} (inter alia) 4.00 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}, \alpha$-anomer), 4.04 (s , $\mathrm{CH}_{2} \mathrm{Cl}, \beta$-anomer), 4.57 (d, J ${ }_{1,2} 8.4,1-\mathrm{H} \beta$), 5.46 (dd, J ${ }_{1,2} 3.5, \mathrm{~J}_{2,3}$ 10.4, 2-H α), $5.74(\mathrm{br} \mathrm{d}, 1-\mathrm{H} \alpha$), $5.85(\mathrm{br} \mathrm{d}, 4-\mathrm{H} \beta$) and $5.90(\mathrm{br} \mathrm{d}$, $4-\mathrm{H} \alpha$); δ_{c} (inter alia) $40.54\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 63.91(\mathrm{C}-6 \beta), 64.17(\mathrm{C}-6 \alpha)$, $66.60(\mathrm{C}-4 \beta+-5 \alpha), 67.92(\mathrm{C}-4 \alpha), 70.77$ (C-2 $), 71.21(\mathrm{C}-5 \beta)$, $71.40\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.27$ (C-3 $), 73.50(\mathrm{C}-2 \beta), 75.66$ ($\mathrm{C}-3 \beta$), 90.81 (C-1 α) and 96.08 (C-1ß).

2,4-D i-0 -benzoyl-3-0-benzyl-6-0-(tert-butyldipheny|silyl)- α, β -D-galactopyranose 16

A cooled and stirred solution of the TM S-ethyl glycoside 13 ($500 \mathrm{mg}, 0.61 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.5 \mathrm{~cm}^{3}\right.$) was treated with TFA $\left(5 \mathrm{~cm}^{3}\right)$ for 20 min at $0^{\circ} \mathrm{C}$ before a mixture of toluene $\left(30 \mathrm{~cm}^{3}\right)$ and ethyl acetate ($15 \mathrm{~cm}^{3}$) was added. The solvents were then removed under reduced pressure and toluene was evaporated off from the residue several times to give the hemiacetal derivative $\mathbf{1 6}$ ($438 \mathrm{mg}, 99.9 \%$) as an amorphous solid, which ${ }^{1} \mathrm{H}$ NM R spectroscopy showed to contain the α - and β-anomer in the ratio of 2.5:1, respectively; $[a]_{\mathrm{D}}^{22}+99\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}^{-}}$ (inter alia) $1.03\left(9 \mathrm{H}, \mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right), 3.70-3.85\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.85$ (dd, J ${ }_{3,4} 3.0,3-\mathrm{H} \beta$), 4.26 (dd, J ${ }_{3,4} 3.0,3-\mathrm{H} \alpha$), $4.38\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{5,6}\right.$ 7.0, $5-H), 4.66\left(d, J_{1,2} 8.2,1-H \beta\right), 4.74(2 \mathrm{H}, \mathrm{m}, \mathrm{J} 12.5$, $\mathrm{CH}_{2} \mathrm{Ph}$), 5.28 (dd, J 2,3 10.0, 2-H β), 5.38 (dd, J 2,3 10.0, 2-H α), $5.59\left(\mathrm{~d}, \mathrm{~J}_{1,2} 3.5,1-\mathrm{H} \alpha\right.$) and $6.06(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}) ; \delta_{\mathrm{c}}$ (inter alia) $18.1\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 26.3\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 60.7(\mathrm{C}-6 \beta), 61.3(\mathrm{C}-6 \alpha), 65.5(\mathrm{C}-$ 4β), 67.0 (C-4 $)$), 68.7 (C-5 $)$) 70.6 (C-2 α), 70.8 ($\mathrm{CH}_{2} \mathrm{Ph}$), 72.2 (C-3 $), 73.4$ ($\mathrm{C}-5 \beta$), 73.6 ($\mathrm{C}-2 \beta$), 77.8 ($\mathrm{C}-3 \beta$), $90.0(\mathrm{C}-1 \alpha)$ and 96.6 (C-1 β).

2,4,6-T ri-0-benzoyl-3-0-benzyl- α-D-galactopyranosyl trichloroacetimidate 6

To a stirred solution of the hemiacetal 14 ($500 \mathrm{mg}, 0.86 \mathrm{mmol}$) and $\mathrm{CCl}_{3} \mathrm{CN}\left(3 \mathrm{~cm}^{3}, 30 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ cooled to $0^{\circ} \mathrm{C}$ was added DBU ($0.128 \mathrm{~cm}^{3}, 0.86 \mathrm{mmol}$) under nitrogen. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and then was concentrated. FCC of the residue (solvent B) gave the trichloroacetimidate 6 ($620 \mathrm{mg}, 98 \%$) as a syrup; $[a]_{0}^{20}+121$ (c 2, CHCl_{3}) ; R 0.43 (solvent A); $\delta_{\mathrm{H}} 4.38$ (1 H, dd, J $3.43 .0,3-\mathrm{H}$), $4.50\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.60\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{5,6 \mathrm{a}}=\mathrm{J}_{5,6 \mathrm{~b}}=6.0\right.$, $5-\mathrm{H}), 4.64$ and $4.84\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 12.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.70(1 \mathrm{H}$, dd, $6-\mathrm{H}^{\mathrm{b}}$), $5.85\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 10.5,2-\mathrm{H}\right), 6.22(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H})$, 6.93 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}, 2,2.5,1-\mathrm{H}$), $7.20-8.30(20 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ph}$) and $8.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} 62.90(\mathrm{C}-6), 67.46$ (C-4), $69.33(\mathrm{C}-2)$, $70.18(\mathrm{C}-5), 71.41\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.45(\mathrm{C}-3), 90.98\left(\mathrm{CCl}_{3}\right), 94.17$ (C-1), 127.97-130.19, 133.40-133.70 and 137.32 (Ph), 160.48 ($\mathrm{C}=\mathrm{NH}$), 165.05, 165.10 and $165.24\left(\mathrm{CO}_{2} \mathrm{Ph}\right.$); ESM S(+) data: $\mathrm{m} / \mathrm{z} 565.0\left(100 \%,\left[\mathrm{M}-\mathrm{CCl}_{3} \mathrm{CONH}^{+}\right)\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{NO}_{9}\right.\right.$ requires M, 725.10).

2,4-D i-0 -benzoyl-3-0-benzyl-6-0-chloroacetyl- α - D -galactopyranosyl trichloroacetimidate 7

A cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of the hemiacetal derivative 15 ($430 \mathrm{mg}, 0.77 \mathrm{mmol}$) and trichloroacetonitrile (2.5 $\mathrm{cm}^{3}, 25 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) was treated with

DBU ($\left.0.113 \mathrm{~cm}^{3}, 0.76 \mathrm{mmol}\right)$ for 1.5 h ; TLC (solvent B) then revealed the formation of two major components (presumably the α - and β-trichloroacetimidate). Stirring was continued at room temperature for 1 h , whereafter TLC showed the presence of a single major product. The solvents were evaporated off under reduced pressure and the residue was subjected to FCC (solvent B) to give the trichloroacetimidate $7(370 \mathrm{mg}, 69 \%)$ as an amorphous solid; $[a]_{D}^{21}+143\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 4.02(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{CI}\right), 4.22-4.45\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.6-\mathrm{H}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 4.60 and $4.77\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 12.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,3$ 10.5, 2-H), $6.00(1 \mathrm{H}, \mathrm{br} s, 4-\mathrm{H}), 6.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,23.0,1-\mathrm{H}$), 7.10-8.20 ($15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}$) and $8.57(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}} 40.41$ $\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 63.73$ (C-6), 67.03 (C-4), 68.98 (C-2), 69.57 (C-5), $71.16\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.92(\mathrm{C}-3), 90.66\left(\mathrm{CCl}_{3}\right), 93.76(\mathrm{C}-1), 127.73-$ 129.87, 133.27, 133.52 and 136.91 (Ph), 160.14 ($\mathrm{C}=\mathrm{NH}$), 165.43 and $165.66\left(\mathrm{CO}_{2} \mathrm{Ph}\right)$ and $166.75\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$.

2,4-D i-0-benzoyl-3-0-benzyl-6-0 -(tert-butyldiphenyIsilyl)- α-Dgalactopyranosyl trichloroacetimidate 8

This compound was prepared from compound $\mathbf{1 6}(438 \mathrm{mg}, 0.61$ $\mathrm{mmol})$ and $\mathrm{CCl}_{3} \mathrm{CN}\left(2 \mathrm{~cm}^{3}, 20 \mathrm{mmol}\right)$ in the presence of DBU ($0.09 \mathrm{~cm}^{3}, 0.6 \mathrm{mmol}$) as described for the derivative 6 . FCC (toluene) gave the trichloroacetimidate 8 ($460 \mathrm{mg}, 87 \%$) as a syrup; $\delta_{\mathrm{H}} 1.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right), 3.83\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{5,6} 7.2,6-\mathrm{H}_{2}\right), 4.33$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3,4} 3.0,3-\mathrm{H}\right), 4.41(1 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}), 4.78$ and $4.98(2 \mathrm{H}$, A B q, J 12.3, CH ${ }_{2} \mathrm{Ph}$), $5.79\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 10.2,2-\mathrm{H}\right.$), $6.30(1 \mathrm{H}$, d, 4-H), $6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}, 2 \mathrm{l} 3.6,1-\mathrm{H}), 7.11-8.20(25 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{Ph})$ and $8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} 18.98\left(\mathrm{M} \mathrm{e} \mathrm{C}^{2}\right), 26.61\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 61.52$ ($\mathrm{C}-6$) , $66.75(\mathrm{C}-4), 69.35(\mathrm{C}-2), 71.06\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.25(\mathrm{C}-5), 72.37$ (C-3), $90.89\left(\mathrm{CCl}_{3}\right), 94.03(\mathrm{C}-1), 127.91-130.64,132.94-133.46$, 135.69, 135.76 and 137.67 (Ph), $160.52(\mathrm{C}=\mathrm{NH})$ and 166.61 ($\mathrm{CO}_{2} \mathrm{Ph}$).

M ethyl 2,4-di-0 -benzoyl-3-0 -benzyl-6-0 -chloroacetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-0-benzoyl- α-D-mannopyranoside 18

To a stirred and cooled $\left(-60^{\circ} \mathrm{C}\right)$ solution of the trichloroacetimidate $7(1.40 \mathrm{~g}, 2.0 \mathrm{mmol})$ and the D -mannopyranoside acceptor $4(1.20 \mathrm{~g}, 2.4 \mathrm{mmol})$ in dry dichloromethane ($5 \mathrm{~cm}^{3}$) under nitrogen was added TM S triflate ($0.11 \mathrm{~cm}^{3}, 0.56 \mathrm{mmol}$), whereafter the temperature was allowed to rise to $-30^{\circ} \mathrm{C}$ and stirring was continued for 80 min . N, N-D iisopropylethylamine ($0.12 \mathrm{~cm}^{3}, 0.7 \mathrm{mmol}$) was then added and the solvent was removed under reduced pressure. FCC (solvent B) of the residue provided first methyl 2,4-di-0-benzoyl-3-0-benzyl-6-0 chloroacetyl- α-d-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-0-benzoyl-α-d-mannopyranoside 20 ($368 \mathrm{mg}, 18 \%$) as an amorphous solid; $[\alpha]_{\mathrm{D}}^{20}+50\left(\mathrm{c} 1.43, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}} 3.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02(2$ $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}$), 4.12 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2^{\prime}, 3^{\prime}} 10.5,3^{\prime}-\mathrm{H}$), $4.24\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{5^{\prime}, 6^{\prime}}\right.$ $6.0,6^{\prime}-\mathrm{H}_{2}$), $4.28(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.40-4.70\left(6 \mathrm{H}, \mathrm{m}, 4\right.$ - and $5^{\prime}-\mathrm{H}$ $6-\mathrm{H}_{2}$ and $\mathrm{CH}_{2} \mathrm{Ph}$), $4.89\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.5,1-\mathrm{H}\right), 5.53-5.68(3 \mathrm{H}, \mathrm{m}$, $\mathrm{J}_{\mathrm{H}^{\prime}, 2^{\prime}} 4.0,1^{\prime}-, 2^{\prime}-$ and $\left.3-\mathrm{H}\right), 5.73\left(1 \mathrm{H}, \mathrm{d}^{2} \mathrm{~J}_{3^{\prime}, 4^{\prime}} 3.5,4^{\prime}-\mathrm{H}\right), 5.88(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 3.2,2-\mathrm{H}$) and $7.00-8.20(30 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Ph})$. Continued elution gave the β-linked disaccharide derivative 18 (1.135 $\mathrm{g}, 55 \%$) as an amorphous solid; $[a]_{0}^{20}+59$ (c 1.3, CHCl_{3}) (Found: C, 65.4; H , 5.0. $\mathrm{C}_{57} \mathrm{H}_{51} \mathrm{ClO}_{17}$ requires C, 65.6; $\mathrm{H}, 4.9 \%$); $\delta_{\mathrm{H}} 3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5^{\prime}, 6 \mathrm{a}^{\prime}} 4.3, \mathrm{~J}_{6 \mathrm{a}^{\prime}, 66^{\prime}} 13.0\right.$, $6^{\prime}-H^{\mathrm{a}}$), $3.58\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, 3^{\prime}-\mathrm{H}\right), 3.71(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 3.82\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5}^{\prime}, 6\right.$ b $\left.^{\prime} 9.0,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.07\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{5,6 \mathrm{~b}} 2.0\right.$, $5-\mathrm{H}), 4.38$ and $4.61\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 12.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.40(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=9.5,4-H\right), 4.47\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5,6 \mathrm{a}} 3.5, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right)$, 4.62 ($1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}$), $4.74\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right.$), $4.83(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}_{1,2} 1.9,1-\mathrm{H}$), $5.46\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2^{\prime}, 3^{\prime}} 10.0,2^{\prime}-\mathrm{H}\right.$), $5.58\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{3^{\prime}, 4}\right.$ 3.0, 4'-H), $5.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,33.5,2-\mathrm{H}), 5.81(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and 6.90-8.05 ($30 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Ph}$); $\delta_{\mathrm{c}} 40.22\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 55.35\left(\mathrm{OCH}_{3}\right)$, 62.50 (C-6), 62.94 (C-6'), 65.72 (C-4'), 69.32 (C-5), 70.02 (C-3), 70.44 (C-2), 70.76 ($2 \mathrm{C}, \mathrm{C}-5^{\prime}+\mathrm{CH}_{2} \mathrm{Ph}$), 71.36 (C-2'), 73.69 (C-4), 76.03 (C-3'), 98.50 (C-1), 101.21 (C-1'), 127.74-129.80, 133.08 and $137.51(\mathrm{Ph}), 164.07,165.03$ and $165.92\left(\mathrm{CO}_{2} \mathrm{Ph}\right)$ and $166.81\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$.

M ethyl 2,4-di-0-benzoyl-3-0-benzyl-6-0-(tert-butyldiphenyl-silyl)- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-0-benzoyl- α-Dmannopyranoside 19
The reaction of compounds 8 ($180 \mathrm{mg}, 0.21 \mathrm{mmol}$) and 4 (132 $\mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ in the presence of TMS triflate ($0.01 \mathrm{~cm}^{3}, 0.052 \mathrm{mmol}$) was accomplished under nitrogen at -70 to $-10^{\circ} \mathrm{C}$, as described for the preparation of the disaccharide 18. FCC (toluene \longrightarrow solvent A) provided first methyl 2,4-di-O-benzoyl-3-0-benzyl-6-0-(tert-butyldiphenyl-silyl)- α-d-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-benzoyl- α-Dmannopyranoside 21 ($68 \mathrm{mg}, 27 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}$ +41 (c 1, CHCl_{3}); $\mathrm{R}_{\mathrm{f}} 0.40$ (solvent A) (Found: C, 70.45; H, 6.0. $\mathrm{C}_{71} \mathrm{H}_{68} \mathrm{O}_{16} \mathrm{Si}$ requires $\left.\mathrm{C}, 70.75 ; \mathrm{H}, 5.7 \%\right)$; $\delta_{\mathrm{H}} 1.00(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{5^{\prime}, 6 \mathrm{a}^{\prime}}=\mathrm{J}_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}}=9.0\right.$, $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5^{\prime}, 66^{\prime}} 6.0,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right.$), $4.20\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3^{\prime} \cdot 4^{\prime}}\right.$ $3.0,3^{\prime}-\mathrm{H}$), 4.28 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $4.40\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5,6 \mathrm{a}} 4.2,6-\mathrm{H}^{\mathrm{a}}\right.$), $4.52\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=9.5,4-\mathrm{H}\right), 4.55\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.60$ and $4.83\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 12.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{I}_{1,2} 1.5\right.$, 1-H), 5.19 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5,6 \mathrm{~b}} 1.5, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 11.9,6-\mathrm{H}^{\mathrm{b}}$), 5.58-5.72 (4 H, $\mathrm{m}, 1^{\prime}-, 2-, 2^{\prime}-$ and $\left.3-\mathrm{H}^{\prime}\right), 6.23\left(1^{\prime} \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right)$ and $7.00-8.10$ (40 $\mathrm{H}, \mathrm{m}, 8 \times \mathrm{Ph}) ; \delta_{\mathrm{c}} 19.11\left(\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right), 26.78\left(\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right), 55.53\left(\mathrm{OCH}_{3}\right)$, 61.33 ($\mathrm{C}-6^{\prime}$), 63.31 ($\mathrm{C}-6$), 67.31 ($\left(-4^{\prime}\right), 69.33$ ($(-5), 69.78$ (C-2'), 69.86 (C-5'), 70.50 (C-2), 71.25 ($\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 72.81$ (C-4), 73.11 ($\mathrm{C}-3^{\prime}$), 73.27 (C-3), 98.43 (C-1), 99.07 ($\mathrm{C}-1^{\prime}$), 127.45129.96, 133.05-133.32, 135.50 and 137.96 (Ph) and 165.02$166.39\left(\mathrm{CO}_{2} \mathrm{Ph}\right)$. Continued elution gave the β-linked disaccharide derivative 19 ($104 \mathrm{mg}, 41 \%$) as an amorphous solid; $[a]_{0}^{24}+39\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{f}} 0.26$ (solvent A), 0.57 (solvent B) (Found: C, $70.45 ; \mathrm{H}, 5.9 \%$); $\delta_{\mathrm{H}} 0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right), 3.38$ (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{b}^{\prime}-\mathrm{H}_{2}\right), 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.55\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5^{\prime}, 6 \mathrm{a}^{\prime}} 5.0\right.$, $\left.\mathrm{J}_{5^{\prime}, 66^{\prime}} 9.0,5^{\prime}-\mathrm{H}\right), 3.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3^{\prime} 4^{\prime}} 3.0,3^{\prime}-\mathrm{H}\right), 4.09(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{5,6} 3.0,5-H\right), 4.42\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=10.0,4-\mathrm{H}\right), 4.59(2 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 4.60$ and $4.79\left(2 \mathrm{H}, \mathrm{AB}\right.$ q, J 13.0, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.75$ (1 $\left.\mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 2.0,1-\mathrm{H}\right), 5.50(1 \mathrm{H}$, dd, $\mathrm{J}_{2^{\prime}, 3^{\prime}} 10.1,2^{\prime}-\mathrm{H}$), $5.61\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2,3} 3.5,2-\mathrm{H}\right), 5.78(1 \mathrm{H}$, dd, $3-\mathrm{H}$), 5.97 ($1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}$) and $6.90-8.01$ ($40 \mathrm{H}, \mathrm{m}$, $8 \times \mathrm{Ph}) ; \delta_{\mathrm{c}} 19.01\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 26.79\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 55.44\left(\mathrm{OCH}_{3}\right), 60.20$ (C-6'), 62.92 (C-6), 65.45 (C-4'), 69.65 (C-5), 69.95 (C-3), 70.85 ($2 \mathrm{C}, \mathrm{C}-2+\mathrm{CH}_{2} \mathrm{Ph}$), 71.93 (C-2'), 73.48 ($2 \mathrm{C}, \mathrm{C}-4+$ -5 '), 76.64 ($\mathrm{C}-3^{\prime}$), 98.53 ($\mathrm{C}-1$), 101.45 ($\left(-1^{\prime}\right), 127.73-130.22$, 132.42-133.43, 135.68, 137.60 and 138.00 (Ph) and 165.04$166.02\left(\mathrm{CO}_{2} \mathrm{Ph}\right)$. The condensation reaction at $-12^{\circ} \mathrm{C}$ (instead of at -70 to $-10^{\circ} \mathrm{C}$) afforded compounds 19 and 21 in 47 and 37% yield, respectively.

M ethyl 2,4-di-0-benzoyl-6-0-chloroacetyl- β-D-galacto-pyranosyl-($1 \rightarrow 4$)-2,3,6-tri-0-benzoyl- α-D-mannopyranoside 22

 A solution of the disaccharide derivative $18(1.0 \mathrm{~g}, 0.96 \mathrm{mmol})$ in 2-methoxyethanol $\left(30 \mathrm{~cm}^{3}\right)$ containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(240$ mg) was shaken under a slight overpressure of hydrogen at room temperature for 2.5 h ; TLC (solvent C) then showed that no trace of the starting material remained. The spent catalyst was filtered off with the aid of a Celite pad and the filtrate was concentrated. FCC ($4: 1$ toluene-ethyl acetate) of the residue gave the debenzylated disaccharide 22 ($878 \mathrm{mg}, 96 \%$) as an amorphous solid; $[a]_{0}^{20}-11$ (c 1, CHCl_{3}) (Found: C, 63.0; $\mathrm{H}, 4.8 . \mathrm{C}_{50} \mathrm{H}_{45} \mathrm{ClO}{ }_{17}$ requires $\mathrm{C}, 63.0 ; \mathrm{H}, 4.8 \%$); $\delta_{\mathrm{H}} 2.86$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.49(1 \mathrm{H}, \mathrm{t}$, $\left.\int_{5^{\prime}, 60^{\prime}}=\int_{5^{\prime}, 66^{\prime}}=6.0,5^{\prime}-H\right), 3.62\left(1 \mathrm{H}, \mathrm{dd}, 6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.65(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 3.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{6 \mathrm{a}^{\prime}, 66^{\prime}} 10.5,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right.$), $3.95(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}^{\prime}\right), 4.10\left(1 \mathrm{H}, \mathrm{dt}_{\mathrm{J}} \mathrm{J}_{5,6} 2.5,5-\mathrm{H}\right), 4.44\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3.4}=\mathrm{J}_{4.5}=9.5\right.$, $4-\mathrm{H}), 4.63\left(2 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}_{2}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1^{\prime}, 2^{2}} 7.8,1^{\prime}-\mathrm{H}\right), 4.85(1 \mathrm{H}$, d, J $\mathrm{J}_{1,2} 2.0,1-\mathrm{H}$), $5.30\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2^{\prime} 3^{\prime}} 9.9,2^{\prime}-\mathrm{H}\right.$), $5.39\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3^{\prime} 4^{\prime}}\right.$ 3.2, 4'-H), $5.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.3$ 3.5, 2-H), $5.81(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and 7.03-8.11 ($25 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{Ph}$); $\delta_{\mathrm{c}} 40.30\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 55.49$ $\left(\mathrm{OCH}_{3}\right), 62.73$ (C-6), $63.00\left(\mathrm{C}-6^{\prime}\right), 69.49(\mathrm{C}-5), 69.84$ (2 C, C-3 + -4'), 70.64 (C-2), 71.06 (C-5'), 71.66 (C-3'), 73.67 (2 C, C-2' + -4), 98.66 (C-1), 100.86 (C-1'), 128.24-130.06 and 133.22-133.59 (Ph), 165.06-166.04 ($\mathrm{CO}_{2} \mathrm{Ph}$) and 166.58 $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$.
M ethyl 2,4-di-0 -benzoyl-6-0-(tert-butyldiphenylsilyl)- β - D -galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-0-benzoyl- $\alpha-\mathrm{D}$-mannopyranoside 23

This compound was prepared by hydrogenolysis of the disaccharide $19(530 \mathrm{mg})$ in the presence of $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(180$ $\mathrm{mg})$ in $1: 1$ methanol-ethyl acetate ($10 \mathrm{~cm}^{3}$) during 10 h as described for the derivative 22. FCC (solvent B) gave the monohydroxylic disaccharide derivative 23 ($422 \mathrm{mg}, 86 \%$) as an amorphous solid; $[a]_{b}^{25}-19.5$ ($1, \mathrm{CHCl}_{3}$); $\mathrm{R}_{\mathrm{f}} 0.40$ (solvent B) (Found: $\mathrm{C}, 68.7 ; \mathrm{H}, 5.6 . \mathrm{C}_{64} \mathrm{H}_{62} \mathrm{O}_{16} \mathrm{Si}$ requires $\mathrm{C}, 68.9 ; \mathrm{H}, 5.6 \%$); $\delta_{\mathrm{H}} 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 2.85\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{B}^{\prime}, \mathrm{OH}} 4.9, \mathrm{OH}\right), 3.35(2 \mathrm{H}$, $\left.\mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right), 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.62\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{5^{\prime}, 6 \mathrm{a}^{\prime}} 5.0, \mathrm{~J} \mathrm{~J}_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 9.0\right.$, $\left.5^{\prime}-\mathrm{H}\right), 4.08\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.5-\mathrm{H}\right), 4.43\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=10.0\right.$, $4-\mathrm{H}), 4.62\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.6,1^{\prime}-\mathrm{H}\right), 4.84(1$ $\left.\mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 2.0,1-\mathrm{H}\right), 5.30\left(1 \mathrm{H}, \mathrm{dd}_{1} \mathrm{~J}_{2^{\prime}, 3^{\prime}} 10.0,2^{\prime}-\mathrm{H}\right), 5.55(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{2,3} 3.4,2-\mathrm{H}\right), 5.72(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 5.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3^{\prime} 4^{4}} 3.2,4^{\prime}-\mathrm{H}\right)$ and $6.65-8.10(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}) ; \delta_{\mathrm{c}} 18.93\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 26.68$ ($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$), $55.46\left(\mathrm{OCH}_{3}\right), 60.09\left(\mathrm{C}-6^{\prime}\right), 62.92(\mathrm{C}-6), 69.60(\mathrm{C}-5)$, 69.78 (2 C, C-3 + -4'), 70.89 (C-2), 72.36 (C-3'), 73.31 (C-2'), 73.42 (C-5'), 73.83 (C-4), 98.54 (C-1), 101.12 ($\mathrm{C}-1^{\prime}$), 127.67130.24, 132.39-133.41 and $135.61(\mathrm{Ph})$ and $165.02-166.61$ ($\mathrm{CO}_{2} \mathrm{Ph}$).

M ethyl 2,4,6-tri- 0 -benzoyl-3-0-benzyl- β-d-galactopyranosyl($1 \rightarrow 3$)-2,4-di- 0 -benzoyl-6-0-chloroacetyl- β-D-galactopyrano-syl-(1 $\rightarrow 4$)-2,3,6-tri-0-benzoyl- α-d-mannopyranoside 24 The reaction of compounds 6 ($535 \mathrm{mg}, 0.74 \mathrm{mmol}$) and 22 (467 $\mathrm{mg}, 0.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \mathrm{~cm}^{3}\right)$ in the presence of TMS triflate ($0.029 \mathrm{~cm}^{3}, 0.15 \mathrm{mmol}$) was accomplished under nitrogen at -42 to $-15^{\circ} \mathrm{C}$, as described for the preparation of the disaccharide 18. FCC (solvent C) provided first methyl 2,4,6-tri-O-benzoyl-3-0-benzyl- α-d-galactopyranosyl-($1 \rightarrow 3$)-2,4-di0 -benzoyl-6-0-chloroacetyl- β-d-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-O-benzoyl- α-d-mannopyranoside 26 ($148 \mathrm{mg}, 20 \%$) as an amorphous solid; $[a]_{0}^{20}+103$ (c 1, CHCl_{3}); δ_{H} (inter alia) $3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.68$ and $3.69\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 15.0, \mathrm{CH}_{2} \mathrm{CI}\right)$, $4.83\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1,2} 8.0,1^{\prime}-\mathrm{H}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 1.5,1-\mathrm{H}\right)$ and 5.59 $\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{l}^{\prime \prime} 2^{2} 3.5,1^{\prime \prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}} 40.16\left(\mathrm{CH}_{2} \mathrm{CI}\right), 55.38\left(\mathrm{OCH}_{3}\right), 62.10$ ($\mathrm{C}-6^{\prime \prime}$), 62.27 ($\mathrm{C}-6$), 62.61 ($\mathrm{C}-6^{\prime}$), 64.23 ($\left.\mathrm{C}-4^{\prime}\right), 67.25$ ($\mathrm{C}-5^{\prime \prime}$), $67.60\left(\mathrm{C}-4^{\prime \prime}\right), 69.14\left(2 \mathrm{C}, \mathrm{C}-2^{\prime \prime}+-5\right), 70.00(\mathrm{C}-3), 70.50(\mathrm{C}-2)$, 70.70 ($2 \mathrm{C}, \mathrm{C}-5^{\prime}+\mathrm{CH}_{2} \mathrm{Ph}$), $71.49\left(\mathrm{C}-2^{\prime}\right), 72.25\left(\mathrm{C}-3^{\prime}\right), 72.83$ ($\mathrm{C}-3^{\prime \prime}$), 74.36 (C-4), 92.55 ($\mathrm{C}-1^{\prime \prime}$), 98.53 ($\mathrm{C}-1$), 101.52 ($\mathrm{C}-1^{\prime}$), 127.39-129.50, 133.21 and $137.15(\mathrm{Ph})$ and 164.51-166.06 $\left(\mathrm{CO}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CI}\right)$. Continued elution gave the β, β-linked trisaccharide $\mathbf{2 4}$ ($541 \mathrm{mg}, 74 \%$) as an amorphous solid; $[a]_{0}^{20}+43$ (c 1, CHCl_{3}); $\delta_{\mathrm{H}} 3.25\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5^{\prime}, 6 \mathrm{a}^{\prime}} 7.5, \mathrm{~J}_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.7,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right.$), 3.38 $(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3), 3.55$ and $3.56\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 15.0, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.60$ $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.82\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5^{\prime}, 6 b^{\prime}} 5.5,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.95(2$ $\left.\mathrm{H}, \mathrm{m}, 5-\mathrm{and} 5^{\prime \prime}-\mathrm{H}\right), 4.03\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2^{\prime}, 3^{\prime}} 10.0,3^{\prime \prime}-\mathrm{H}\right), 4.18(1 \mathrm{H}$,
 $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.33\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=10.0,4-\mathrm{H}\right), 4.44\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, $4.60\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{5^{\prime}, 66^{\prime \prime}} 6.5,6^{\prime \prime}-\mathrm{H}^{\mathrm{b}}\right.$), $4.70\left(1 \mathrm{H}, \mathrm{d}^{2} \mathrm{~J}_{1^{\prime}, 2^{2}} 8.0,1^{\prime}-\mathrm{H}\right), 4.74$ ($1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{\mathrm{m}^{\prime \prime} 2^{\prime \prime}} .0,1^{\prime \prime}-\mathrm{H}$), $4.79\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 1.8,1-\mathrm{H}\right), 5.22(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{2^{\prime}, 3^{\prime}} 10.5,2^{\prime}-\mathrm{H}\right), 5.46\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{H}\right)$), $5.59\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 3.5\right.$, $2-\mathrm{H}), 5.63\left(1 \mathrm{H}, \mathrm{d}^{2}, \mathrm{~J}_{3^{\prime}, 4^{\prime \prime}} 3.5,4^{\prime \prime}-\mathrm{H}\right), 5.72(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 5.75(1$ $\mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{3^{\prime} 4^{\prime}} 3.4,4^{\prime}-\mathrm{H}$) and 6.88-8.05 ($45 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{Ph}$); $\delta_{\mathrm{c}} 40.15$ $\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 55.46\left(\mathrm{OCH}_{3}\right), 62.19\left(\mathrm{C}-6^{\prime \prime}\right), 62.61(\mathrm{C}-6), 63.43\left(\mathrm{C}-6^{\prime}\right)$, 66.05 (C-4"), 69.41 (C-5), 69.70 (2 C, C-3 + -4'), 70.55 (C-2), $70.80\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.93\left(\mathrm{C}-5^{\prime}\right), 71.13\left(\mathrm{C}-2^{\prime \prime}\right), 71.39\left(2 \mathrm{C}, \mathrm{C}-2^{\prime}+\right.$ $-5^{\prime \prime}$), 73.31 (C-4), 75.76 (C-3"), 77.40 (C-3'), 98.49 (C-1), 100.78 (C-1'), 101.47 ($\left(-1^{\prime \prime}\right), 127.69-129.86,132.46-133.20$ and 136.83 (Ph), 163.60-165.60 ($\mathrm{CO}_{2} \mathrm{Ph}$) and $166.44\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$.

M ethyl 2,4,6-tri- 0 -benzoyl-3-0-benzyl- β-d-galactopyranosyl($1 \rightarrow 3$)-2,4-di-0-benzoyl-6-0-(tert-butyldiphenylsilyl)- β-d-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-0 -benzoyl- α-D-mannopyranoside 25

The reaction of compounds 6 ($353 \mathrm{mg}, 0.49 \mathrm{mmol}$) and 23 ($417 \mathrm{mg}, 0.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ in the presence of TM S triflate ($0.02 \mathrm{~cm}^{3}, 0.1 \mathrm{mmol}$) was accomplished under
nitrogen at $0^{\circ} \mathrm{C}$, as described for the preparation of the disaccharide 18. FCC [toluene-ethyl acetate (99.2:0.8 $\longrightarrow 91: 9$)] provided first methyl 2,4,6-tri-O-benzoyl-3-0-benzyl- α-D-galactopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzoyl-6-0-(tert-butyl-diphenylsilyl)- β-d-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-benzoyl-α-d-mannopyranoside 27 ($100 \mathrm{mg}, 16 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{20}+82\left(\mathrm{c} \mathrm{1}, \mathrm{CHCl}_{3}\right.$); $\mathrm{R}_{\mathrm{f}} 0.52$ (solvent B) (Found: C, $70.0 ; \mathrm{H}$, 5.7. $\mathrm{C}_{98} \mathrm{H}_{90} \mathrm{O}_{24} \mathrm{Si}$ requires $\mathrm{C}, 70.1 ; \mathrm{H}, 5.4 \%$); δ_{H} (inter alia) 0.85 (9 $\mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}^{\mathrm{C}}$) , $3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.76\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1^{\prime}, 3^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right)$, $4.82\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.5,1-\mathrm{H}\right)$ and $5.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1^{\prime}, 2^{\prime 2}} 3.5,1^{\prime \prime}-\mathrm{H}\right)$; δ_{c} $18.68\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 26.49\left(\mathrm{M} \mathrm{e} \mathrm{e}^{\mathrm{C}}\right.$), $55.28\left(\mathrm{OCH}_{3}\right), 59.90\left(\mathrm{C}-6^{\prime}\right), 62.59$ (2 C, C-6 + - $6^{\prime \prime}$), 64.03 (C-4'), $67.11\left(C-5^{\prime \prime}\right), 67.66$ (C-4"), 68.66 (C-2"), 69.47 (C-5), 69.85 (C-3), 70.50 (C-2), 71.12 ($C-2^{\prime}$), 71.34 ($\mathrm{CH}_{2} \mathrm{Ph}$), 72.51 ($\mathrm{C}-3^{\prime \prime}$), 73.14 ($\mathrm{C}-3^{\prime}$), 73.36 (C-5'), 73.77 (C-4), 92.55 ($\mathrm{C}-1^{\prime \prime}$), 98.39 ($\mathrm{C}-1$), 101.28 ($\left(-1^{\prime}\right), 127.32-129.87,132.09-$ 133.57, 135.35, 135.47 and 137.32 (Ph) and 165.01-166.15 ($\mathrm{CO}_{2} \mathrm{Ph}$); ESM S(+) data: $\mathrm{m} / \mathrm{z} 1679.8$ ($32 \%,[\mathrm{M}+\mathrm{H}]^{+}$) and $1702.3\left(60 \%,[\mathrm{M}+\mathrm{N} \mathrm{a}]^{+}\right)\left(\mathrm{C}_{98} \mathrm{H}_{90} \mathrm{O}_{24} \mathrm{Si}\right.$ requires $\left.\mathrm{M}, 1678.56\right)$. Continued elution gave the β, β-linked trisaccharide 25 (275 mg , 44%) as an amorphous solid; $[a]_{D}^{25}+42$ ($\mathrm{C}_{1}, \mathrm{CHCl}_{3}$); $\mathrm{R}_{\mathrm{f}} 0.43$ (solvent B) (Found: C, 70.1; H,5.7\%); $\delta_{\mathrm{H}} 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3}\right.$), $3.02\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.17-3.40\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right), 3.31(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.83\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3^{\prime}, 4^{\prime}}=\mathrm{J}_{3^{\prime}, 4^{\prime \prime}}=3.0,3^{\prime}-\right.$ and $\left.3^{\prime \prime}-\mathrm{H}\right), 3.94(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}_{4,5} 9.6, \mathrm{~J}_{5,6} 3.0,5-\mathrm{H}$), $4.25\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{5,6^{\prime \prime}} 7.3,5^{\prime \prime}-\mathrm{H}\right), 4.37$ and 4.63 ($2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 12.0, \mathrm{CH}_{2} \mathrm{Ph}$), 4.39-4.57 ($5 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 6$ - and $\left.6^{\prime \prime}-\mathrm{H}_{2}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.5,1-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1^{\prime \prime} 2^{\prime \prime}} 7.7,1^{\prime \prime}-\mathrm{H}\right)$, 4.97 (1 H , d, J $\left.1_{1,2}, 7.6,1^{\prime}-H\right), 5.36\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{2^{\prime}, 3^{\prime}} 10.0,2^{\prime}-\mathrm{H}\right), 5.46$ ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{2^{\prime}, 3^{\prime \prime}} 10.0,2^{\prime \prime}-\mathrm{H}$), $5.53\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 3.2,2-\mathrm{H}\right.$), $5.65(1 \mathrm{H}$, dd, J $\left.{ }_{3,4} 9.6,3-\mathrm{H}\right), 5.98\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 6.18\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right)$ and $6.60-8.60(55 \mathrm{H}, \mathrm{m}, 11 \times \mathrm{Ph}) ; \delta_{\mathrm{c}} 18.81\left(\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right), 26.54\left(\mathrm{M} \mathrm{e} \mathrm{C}^{\mathrm{C}}\right)$, $55.21\left(\mathrm{OCH}_{3}\right), 60.14\left(\mathrm{C}-6^{\prime}\right), 62.27\left(\mathrm{C}-6^{\prime \prime}\right), 62.85(\mathrm{C}-6), 66.52$ ($\mathrm{C}-4^{\prime \prime}$), 69.71 ($3 \mathrm{C}, \mathrm{C}-3,-4^{\prime}$ and -5), $70.77\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.01(2 \mathrm{C}$, C-2 + -2"), 71.52 ($\mathrm{C}-5^{\prime \prime}$), 71.78 ($\left.\mathrm{C}-2^{\prime}\right), 73.02\left(\mathrm{C}-5^{\prime}\right), 73.80(\mathrm{C}-4)$, 76.58 ($\left(-3^{\prime \prime}\right)$, 77.07 ($\left(-3^{\prime}\right)$, 98.45 (C-1), 101.31 ($\left(-1^{\prime}\right), 101.50$ ($\mathrm{C}-1^{\prime \prime}$), 127.49-130.46, 132.53-133.36, 135.56, 135.65 and $137.39(\mathrm{Ph})$ and $165.10-166.91\left(\mathrm{CO}_{2} \mathrm{Ph}\right)$. A lso isolated was the disaccharide acceptor 23 ($75 \mathrm{mg}, 18 \%$ recovery).

M ethyl 2,4,6-tri-0-benzoyl- β-D-galactopyranosyl-(1 $\rightarrow 3$)-2,4-di0 -benzoyl-6-0 -chloroacetyl- β-d -galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-0-benzoyl- α-D-mannopyranoside 28
This compound was prepared by hydrogenolysis of the trisaccharide $\mathbf{2 4}(200 \mathrm{mg})$ in the presence of $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(50$ mg) in 2-methoxyethanol ($5 \mathrm{~cm}^{3}$) during 5 h , as described for the derivative 22. FCC (2:1 toluene-ethyl acetate) gave the trisaccharide acceptor 28 ($128 \mathrm{mg}, 73 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{20}+10\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 2.89(1 \mathrm{H}, \mathrm{br}$ s, OH$), 3.30(1 \mathrm{H}, \mathrm{dd}$, $\left.\int_{6 a^{\prime}, 6 b^{\prime}} 11.5,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.55$ and $3.58(2 \mathrm{H}, \mathrm{AB}$ q, J $\left.15.0, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.59\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{5^{\prime}, 6 \mathrm{a}^{\prime}}=\mathrm{J}_{5^{\prime}, 66^{\prime}}=6.0,5^{\prime}-\mathrm{H}\right), 3.83(2$ $\mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$ and dd, $\left.6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.96(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 5-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{t}$, $\left.J_{5^{\prime \prime}, 6 a^{\prime \prime}}=J_{5^{\prime \prime}, b^{\prime \prime}}=6.5,5^{\prime \prime}-\mathrm{H}\right), 4.12\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{3^{\prime \prime} 4^{4 \prime}} 3.5,3^{\prime \prime}-\mathrm{H}\right), 4.18(1$ $\left.\mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6 \mathrm{a}^{\prime}, 6 b^{\prime \prime}} 11.5,6^{\prime \prime}-\mathrm{H}^{\mathrm{a}}\right), 4.36\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=9.5,4-\mathrm{H}\right)$, $4.47\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 4.58\left(1 \mathrm{H}, \mathrm{dd}, 6^{\prime \prime}-\mathrm{H}^{\mathrm{b}}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1^{\prime}, 2^{2}} 8.2\right.$, $\left.1^{\prime}-H\right), 4.79\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.8,1-\mathrm{H}\right.$ and $\left.\mathrm{d}, \mathrm{J}_{\mathrm{m}^{\prime \prime} 2^{\prime \prime}} 7.5,1^{\prime \prime}-\mathrm{H}\right), 5.09(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J} 2^{2}, 3^{3} 10.0,2^{\prime \prime}-\mathrm{H}$), $5.52\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{2^{\prime}, 3^{\prime}} 9.9,2^{\prime}-\mathrm{H}\right), 5.60(1 \mathrm{H}$, dd, J $2,33.5,2-\mathrm{H}$), $5.63\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{3^{\prime}, 4^{\prime}} 3.0,4^{\prime}-\mathrm{H}\right.$), $5.74(1 \mathrm{H}, \mathrm{dd}$, $3-\mathrm{H}), 5.75\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right)$ and $7.00-8.05(40 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{Ph})$; δ_{c} $40.32\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 55.45\left(\mathrm{OCH}_{3}\right), 62.16\left(\mathrm{C}-6^{\prime \prime}\right), 62.63(\mathrm{C}-6), 63.39$ (C-6'), 69.45 (C-5), 69.81 (2 C, C-3 $+-4^{\prime}$), 70.11 ($\mathrm{C}-4^{\prime \prime}$), 70.50 (C-2), 71.39 (3 C, C-2', -5^{\prime} and $-5^{\prime \prime}$), 71.58 ($\left.C-3^{\prime \prime}\right), 73.24$ ($C-2^{\prime \prime}$), 73.34 (C-4), 76.81 (C-3'), 98.63 (C-1), 101.02 (2 C, C-1 $1^{\prime}+-1^{\prime \prime}$), 128.13-130.06 and 132.94-133.59 (Ph), 164.41-166.08 ($\mathrm{CO}_{2} \mathrm{Ph}$) and $166.57\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$.

M ethyl 2,4,6-tri-0-benzoyl- β-D-galactopyranosyl-(1 $\rightarrow 3$)-2,4-di0 -benzoyl-6-0-(tert-butyldiphenylsilyl)- β-D-galactopyranosyl($1 \rightarrow 4$)-2,3,6-tri- 0 -benzoyl- α-d-mannopyranoside 29
This compound was prepared by hydrogenolysis of the trisaccharide $25(245 \mathrm{mg})$ in the presence of $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(200$ mg) in 3:2 methanol-ethyl acetate ($5 \mathrm{~cm}^{3}$) during 4.5 h , as
described for the derivative 22. FCC (solvent B) gave the trisac charide derivative 29 ($180 \mathrm{mg}, 78 \%$) as an amorphous solid; $[a]_{D}^{25}+24\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right.$); $\mathrm{R}_{\mathrm{f}} 0.24$ (solvent B) (Found: C, 69.0; H, 5.6. $\mathrm{C}_{91} \mathrm{H}_{84} \mathrm{O}_{24}$ Si requires $\left.\mathrm{C}, 68.8 ; \mathrm{H}, 5.3 \%\right)$; $\delta_{\mathrm{H}} 0.93(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}^{\prime}-\mathrm{H}_{2}\right), 3.37(3 \mathrm{H}$ s, OCH ${ }_{3}$), $3.67\left(1 \mathrm{H}, \mathrm{dd}^{\prime} \mathrm{J}_{5^{\prime}, 6 a^{\prime}} 5.0, \mathrm{~J}_{5^{\prime}, 6 b^{\prime}} 8.8,5^{\prime}-\mathrm{H}\right), 3.92(1 \mathrm{H}$ br d, 5-H), $4.00\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3^{\prime}, 4^{4}} 3.0,3^{\prime}-\mathrm{H}\right), 4.08(1 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{J}_{5^{\prime} \cdot 6 \mathrm{a}^{\prime \prime}}=\mathrm{J}_{5^{\prime}, 6 b^{\prime \prime}}=6.5,5^{\prime \prime}-\mathrm{H}\right), 4.29\left(1 \mathrm{H}, \mathrm{J}_{3^{\prime \prime} 4^{4}} 3.2,3^{\prime \prime}-\mathrm{H}\right), 4.39(1 \mathrm{H}$, \left. dd, J ${\text { 6a'. } 6 b^{\prime \prime}}^{11.0} \mathrm{O}^{\prime \prime}-\mathrm{H}^{\mathrm{a}}\right), 4.44\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4.5}=9.9,4-\mathrm{H}\right), 4.55(1$ $\left.\mathrm{H}, \mathrm{d}, \mathrm{J} 5.62 .5,6-\mathrm{H}_{2}\right), 4.74\left(1 \mathrm{H}, \mathrm{dd}, 6^{\prime \prime}-\mathrm{H}^{\mathrm{b}}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1^{\prime}, 2^{2}} 8.0\right.$, $\left.1^{\prime}-\mathrm{H}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.5,1-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1^{\prime \prime}, 2^{\prime \prime}} 7.6,1^{\prime \prime}-\mathrm{H}\right)$, 5.18 (1 H , dd, J $\left.2^{\prime}, 3^{\prime \prime} 10.0,2^{\prime \prime}-\mathrm{H}\right), 5.53\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2^{\prime}, 3^{\prime}} 10.1,2^{\prime}-\mathrm{H}\right)$, 5.58 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,3 \mathrm{3} .4,2-\mathrm{H}$), $5.74\left(2 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}\right.$ and dd, $4^{\prime \prime}-\mathrm{H}$), $6.10\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right)$ and 6.60-8.38(50 H, m, $10 \times \mathrm{Ph}$); ESM S(+) data: $\mathrm{m} / \mathrm{z} 1588.9\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$and $1611.0(45 \%$, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)\left(\mathrm{C}_{91} \mathrm{H}_{84} \mathrm{O}_{24}\right.$ Si requires $\left.\mathrm{M}, 1588.51\right)$.

M ethyl 2,3,4,6-tetra-0-acetyl- β-D -galactopyranosyl-(1 $\rightarrow 3$)-4,6-di-0-acetyl-2-0-benzoyl- β-d -galactopyranosyl-($1 \rightarrow 3$)-2,4,6-tri0 -benzoyl- β-d -galactopyranosyl-($1 \rightarrow 3$)-2,4-di-0 -benzoyl-6-0-chloroacetyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-0-benzoyl- α -D-mannopyranoside 30
The reaction of compounds $\mathbf{5}$ ($275 \mathrm{mg}, 0.33 \mathrm{mmol}$) and 28 (288 $\mathrm{mg}, 0.204 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.5 \mathrm{~cm}^{3}\right)$ in the presence of TM S triflate ($0.016 \mathrm{~cm}^{3}, 0.083 \mathrm{mmol}$) was accomplished under nitrogen at -45 to $-15^{\circ} \mathrm{C}$, as described for the preparation of the disaccharide 18. FCC (2:1 toluene-ethyl acetate) gave the pentasaccharide derivative 30 ($291 \mathrm{mg}, 68 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{20}+16\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.49,1.81,1.98,2.00,2.03$ and $2.08(18 \mathrm{H}, 6 \times \mathrm{s}, 6 \times \mathrm{Ac}), 3.32\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6 \mathrm{a}} 6.8, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 11.5\right.$, $6-\mathrm{H}^{\mathrm{a}}, \mathrm{G}$ ala ${ }^{\mathrm{a}}$, $3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.47-3.56(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{G} \mathrm{al}$; $5-\mathrm{H}, \mathrm{Gal}^{\mathrm{c}} ; 5-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}$), 3.54 and 3.58 ($2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 15.0, \mathrm{CH}_{2} \mathrm{CI}$), $3.70\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, \mathrm{Gal}^{\mathrm{a}}\right)$, $3.77\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{5.6 \mathrm{~b}} 5.7,6-\mathrm{H}^{\mathrm{b}}, \mathrm{Gal}^{\mathrm{a}}\right)$, $3.89\left(1 \mathrm{H}\right.$, ddd, J $\mathrm{J}_{5,6 \mathrm{a}} 4.0,5-\mathrm{H}, \mathrm{M}$ an ${ }^{\mathrm{a}}$), 3.91-4.05 ($6 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$, $\left.\mathrm{Gal}^{\mathrm{a}} ; 5-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}} ; 6-\mathrm{H}_{2}, \mathrm{Gal}^{\mathrm{c}} ; 6-\mathrm{H}_{2}, \mathrm{Gal}^{\mathrm{d}}\right), 4.07\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3,4} 3.5\right.$, $3-\mathrm{H}, \mathrm{Galc}), 4.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 8.0,1-\mathrm{H}, \mathrm{Galc}\right), 4.28\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6 \mathrm{a}}\right.$ $\left.6.0, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 11.5,6-\mathrm{H}^{\mathrm{a}}, \mathrm{G} \mathrm{al}^{\mathrm{b}}\right), 4.29\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=10.0,4-\mathrm{H}\right.$, M an ${ }^{\mathrm{a}}$), $4.34\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}, \mathrm{M}\right.$ an $\left.^{\mathrm{a}}\right), 4.43(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{5,6 \mathrm{~b}} 2.0,6-\mathrm{H}^{\mathrm{b}}, \mathrm{M} \mathrm{an}^{\mathrm{a}}\right), 4.44\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5,6 \mathrm{~b}} 5.0,6-\mathrm{H}^{\mathrm{b}}, \mathrm{Gal}^{\mathrm{b}}\right), 4.47$ ($1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1,2} 8.0,1-\mathrm{H}, \mathrm{Gal} \mathrm{d}^{\mathrm{d}}$), $4.48\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{3,4} 3.0,3-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}\right.$), 4.63 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 8.0,1-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}}$), $4.72\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 8.0,1-\mathrm{H}\right.$ Gal ${ }^{\text {a }}$, 4.76 ($1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 1.5,1-\mathrm{H}, \mathrm{M}$ ana ${ }^{\mathrm{a}}$), 4.81 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{2,3} 10.5$, $2-\mathrm{H}, \mathrm{Gald}), 5.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,310.0,2-\mathrm{H}, \mathrm{Galc}), 5.16(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}$ $\mathrm{Gal}^{\mathrm{d}}$), $5.18\left(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}, \mathrm{Gal}\right.$), $5.20\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2,3} 9.8,2-\mathrm{H}, \mathrm{G} \mathrm{al}{ }^{\text {b }}\right.$), 5.39 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2,3} 10.0,2-\mathrm{H}, \mathrm{Gal}^{\mathrm{a}}$), $5.53\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3,4} 3.8,4-\mathrm{H}\right.$, $\left.\mathrm{Gal}^{\mathrm{a}}\right), 5.57\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2,3} 3.5,2-\mathrm{H}, \mathrm{M}\right.$ an $\left.{ }^{\mathrm{a}}\right)$, $5.68(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}$, M an ${ }^{\mathrm{a}}$), $5.69\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3,4} 3.2,4-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}}\right)$ and $7.00-8.05(45 \mathrm{H}, \mathrm{m}$, $9 \times \mathrm{Ph}) ; \delta_{\mathrm{c}}$ see Table 2.

M ethyl 2,3,4,6-tetra-0-acetyl- β-D -galactopyranosyl-(1 $\rightarrow 3$)-4,6-di-0-acetyl-2-0-benzoyl- β-D-galactopyranosyl-($1 \rightarrow 3$)-2,4,6-tri0 -benzoyl- β-D-galactopyranosyl-($1 \rightarrow 3$)-2,4-di-0 -benzoyl-6-0-(tert-butyldiphenylsilyl)- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri0 -benzoyl- α - D-mannopyranoside 31
To a stirred and cooled ($-40^{\circ} \mathrm{C}$) solution of the trichloroacetimidate 5 ($111 \mathrm{mg}, 0.132 \mathrm{mmol}$) and the trisaccharide acceptor 29 ($172 \mathrm{mg}, 0.108 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ under nitrogen was added triethylsilyl trifluoromethanesulfonate ($0.01 \mathrm{~cm}^{3}, 0.045$ mmol), whereafter the temperature was allowed to rise to $-20^{\circ} \mathrm{C}$ during 2 h and a second portion of the imidate 5 (90 $\mathrm{mg}, 0.107 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ was added. Stirring was continued for a further 1 h at $-10^{\circ} \mathrm{C}$, whereafter the reaction was quenched with N, N-diisopropylethylamine ($0.02 \mathrm{~cm}^{3}, 0.11$ mmol) and the mixture was concentrated. FCC ($7: 3$ tolueneethyl acetate) of the residue gave the protected pentasaccharide $31(140 \mathrm{mg}, 57 \%)$ as an amorphous solid; $[a]_{0}^{20}+22\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$; $\mathrm{R}_{\mathrm{f}} 0.52$ (solvent D); δ_{H} (inter alia) 0.85 ($9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}$), 1.50, 1.82, 1.98, 2.00, 2.03 and $2.10(18 \mathrm{H}, 6 \times \mathrm{s}, 6 \times \mathrm{Ac}), 3.33(3 \mathrm{H}, \mathrm{s}$, OCH_{3}) $4.20\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 8.0,1-\mathrm{H}, \mathrm{Galc}\right), 4.30(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}_{3,4}=\mathrm{J}_{4,5}=9.7,4-\mathrm{H}, \mathrm{M}$ an $\left.^{\mathrm{a}}\right), 4.40\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}, \mathrm{M}\right.$ an $\left.{ }^{\mathrm{a}}\right), 4.50(2$
$\mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.7,1-\mathrm{H}$ and dd, $\left.\mathrm{J}_{3,4} 3.2,3-\mathrm{H}, \mathrm{Gal}{ }^{\mathrm{d}}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2}\right.$ $7.8,1-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}}$), $4.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.6,1-\mathrm{H}, \mathrm{M} \mathrm{an}^{\mathrm{a}}\right.$), $4.76(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}_{1,2} 8.0,1-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{a}}$), $4.84\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2,3} 10.5,2-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}\right.$), 5.11 (1 $\mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2,3} 10.1,2-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{c}}$), $5.16\left(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}\right), 5.20(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}_{3,4} 3.0,4-\mathrm{H}, \mathrm{Gal}$), $5.25\left(1 \mathrm{H}, \mathrm{dd}^{\mathrm{J}} \mathrm{J}_{2,3} 10.5,2-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}}\right.$), 5.34 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 10.1,2-\mathrm{H}, \mathrm{Ga} \mathrm{a}^{\mathrm{a}}$), 5.49 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,3} 3.2,2-\mathrm{H}, \mathrm{M}$ an ${ }^{\mathrm{a}}$), 5.60 ($1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}, \mathrm{M} \mathrm{an}^{\mathrm{a}}$), 5.78 ($1 \mathrm{H}, \mathrm{d}_{\mathrm{J}}$ 3,4 3.2, 4-H , G al ${ }^{\mathrm{b}}$), 5.93 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3,42.9,4-\mathrm{H}, \mathrm{G}$ al ${ }^{\mathrm{a}}$) and 6.60-8.20 ($55 \mathrm{H}, \mathrm{m}, 11 \times \mathrm{Ph}$); δ_{c} see Table 2; ESM S(+) data: m/z 2269.4 ($100 \%,[\mathrm{M}+\mathrm{H}]^{+}$) ($\mathrm{C}_{122} \mathrm{H}_{120} \mathrm{O}_{41} \mathrm{Si}$ requires $\mathrm{M}, 2268.71$). A lso isolated was the trisaccharide acceptor 29 ($43 \mathrm{mg}, 25 \%$ recovery).

M ethyl 2,3,4,6-tetra-0-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 3$)-4,6-di- 0 -acetyl-2-0 -benzoyl- β-D -galactopyranosyl-($1 \rightarrow 3$)-2,4,6-tri0 -benzoyl- β-D-galactopyranosyl-($1 \rightarrow 3$)-2,4-di-0-benzoyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-0-benzoyl- α-D-mannopyranoside 32
(A) A solution of the pentasaccharide derivative 30 (291 mg , 0.139 mmol) and thiourea ($42 \mathrm{mg}, 0.566 \mathrm{mmol}$) in methanol $\left(4 \mathrm{~cm}^{3}\right)$ and 1,4 -dioxane ($1 \mathrm{~cm}^{3}$) was heated at $50^{\circ} \mathrm{C}$ for 2 h . Chloroform ($40 \mathrm{~cm}^{3}$) was added to the reaction mixture and the resulting solution was washed in turn with $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, water, saturated aq. NaHCO_{3} and water, dried ($\mathrm{M} \mathrm{SSO}_{4}$), and concentrated. FCC ($2: 1$ toluene-ethyl acetate) gave unchanged substrate 30 ($86 \mathrm{mg}, 30 \%$ recovery) and the monohydroxylic pentasaccharide derivative 32 ($168 \mathrm{mg}, 60 \%$) as an amorphous solid; $[a]_{D}^{21}+18$ ($c 0.9, \mathrm{CHCl}_{3}$); $\mathrm{R}_{\mathrm{f}} 0.29$ (solvent D); $\delta_{\mathrm{H}} 1.46,1.82,1.98,2.01,2.04$ and $2.10(18 \mathrm{H}, 6 \times \mathrm{S}$, $6 \times \mathrm{Ac}), 2.86\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{OH}\right.$ and $\left.6-\mathrm{H}^{\mathrm{a}}, \mathrm{Gal}^{\mathrm{a}}\right), 3.05(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{5,6 \mathrm{~b}}=J_{6 \mathrm{~b}, 0 \mathrm{OH}}=6.0, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 11.0,6-\mathrm{H}^{\mathrm{b}}, \mathrm{Gal}{ }^{\mathrm{a}}\right), 3.31\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6 \mathrm{a}}\right.$ 7.5, 5-H,G al ${ }^{\text {a }}$), $3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.51\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{3,4} 3.0,3-\mathrm{H}\right.$, G al ${ }^{\text {b }}$), $3.52\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{5,6} 6.8,5-\mathrm{H}, \mathrm{G} \text { ald }\right)^{\mathrm{d}} 3.56\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{5,6} 6.7,5-\mathrm{H}\right.$, Galc), $3.89\left(1 \mathrm{H}, \mathrm{ddd}^{2}, \mathrm{~J}_{5.6 \mathrm{a}} 4.0,5-\mathrm{H}, \mathrm{M}\right.$ an $\left.^{\mathrm{a}}\right), 3.91-4.06(4 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}_{2}, \mathrm{Gal}^{c} ; 6-\mathrm{H}_{2}, \mathrm{Gal}^{\mathrm{d}}$), $3.95\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5,6 \mathrm{a}} 5.8,5-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}}\right.$), 3.98 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{3,4} 3.5,3-\mathrm{H}, \mathrm{Gal}^{a}$), 4.08 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{3,4} 3.0,3-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{c}}$), $4.18\left(1 \mathrm{H}, \mathrm{d}^{\prime} \mathrm{J}_{1,2} 7.7,1-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{c}}\right), 4.23\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right.$, $\mathrm{Gal}^{\mathrm{b}}$), $4.28\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6 \mathrm{~b}} 4.0,6-\mathrm{H}^{\mathrm{b}}, \mathrm{Gal}^{\mathrm{b}}\right.$), $4.34(1 \mathrm{H}, \mathrm{t}$, $J_{3,4}=J_{4,5}=9.5,4-H, M$ an $\left.^{\text {a }}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{6 a, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right.$, $\mathrm{M} \mathrm{an}^{\mathrm{a}}$), $4.44\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{5,6 \mathrm{~b}} 1.1,6-\mathrm{H}^{\mathrm{b}}, \mathrm{M}\right.$ an $^{\mathrm{a}}$), $4.48\left(2 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2}\right.$ 7.5, 1-H and dd, J $3,43.0,3-\mathrm{H}, \mathrm{G}$ ald), 4.63 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 8.0$, $1-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{b}}$), $4.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.9,1-\mathrm{H}, \mathrm{Gal}^{\mathrm{a}}\right.$), $4.78\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2}\right.$ 1.5, 1-H , M an ${ }^{\mathrm{a}}$), 4.81 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2,3} 10.3,2-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{d}}$), $5.03(1 \mathrm{H}$, dd, $\mathrm{J}_{2,3} 9.8,2-\mathrm{H}, \mathrm{Gal}$), $5.15\left(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}, \mathrm{Gal} \mathrm{l}^{\mathrm{d}}\right.$, $5.18(1 \mathrm{H}, \mathrm{d}$, $4-\mathrm{H}, \mathrm{Gal}^{\mathrm{c}}$), $5.23\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{2,3} 10.0,2-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}}\right.$), $5.44(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}_{2,3} 10.0,2-\mathrm{H}, \mathrm{Ga}{ }^{\mathrm{a}}$), $5.47\left(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}, \mathrm{Gal}^{\mathrm{a}}\right), 5.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,3$ $3.5,2-\mathrm{H}, \mathrm{M} \mathrm{an}^{\mathrm{a}}$), $5.66\left(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}}\right.$), $5.68(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}$, M an ${ }^{\mathrm{a}}$) and $7.00-8.05$ ($45 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{Ph}$); δ_{c} see Table 2.
(B) $1 \mathrm{M} \mathrm{ol} \mathrm{dm}{ }^{-3}$ TBAF in THF (Aldrich) ($0.07 \mathrm{~cm}^{3}, 0.07$ mmol of $\mathrm{Bu}_{4} \mathrm{NF}$) was added to a solution of the TBDPS pentasaccharide derivative $31(140 \mathrm{mg}, 0.062 \mathrm{mmol})$ in THF (1 cm^{3}) and the mixture was kept at $20^{\circ} \mathrm{C}$ for 16 h with monitoring by TLC (solvent D). FCC [toluene-ethyl acetate $(2: 1 \rightarrow 1: 1)]$ of the mixture gave the monohydroxylic compound $\mathbf{3 2}$ (80 mg , 64%).

M ethyl 2,3,4,6-tetra-0-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 3$)-4,6-di- 0 -acetyl-2-0 -benzoyl- β-d -galactopyranosyl-($1 \rightarrow 3$)-2,4,6-tri0 -benzoyl- β - D -galactopyranosyl-($1 \rightarrow 3$)-(2,4 -di- 0 -benzoyl- β-Dgalactopyranosyl 6 -dibenzylphosphate)-($1 \rightarrow 4$)-2,3,6-tri-0-benzoyl- α-d-mannopyranoside 33
To a solution of the pentasaccharide derivative 32 (150 mg , 0.074 mmol) and dibenzyl N, N-diisopropylphosphoramidite ($103 \mathrm{mg}, 0.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added 1 H -tetrazole ($26 \mathrm{mg}, 0.37 \mathrm{mmol}$), and the reaction mixture was stirred under nitrogen at room temperature for 3 h ; TLC (solvent D) then revealed the formation of a single major product. The reaction mixture was cooled ($-18{ }^{\circ} \mathrm{C}$), treated with 3 -chloroperbenzoic acid (M CPBA) (55% purity; $77 \mathrm{mg}, 0.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 cm^{3}) and stirred for 90 min . The solvent was removed under reduced pressure and the residue was subjected to FCC (2:1
toluene-ethyl acetate) to give the phosphorylated pentasaccharide derivative 33 ($150 \mathrm{mg}, 89 \%$) as an amorphous solid; $[a]_{0}^{20}+10.5\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.40,1.75,1.89,1.90,1.91$ and 2.00 ($18 \mathrm{H}, 6 \times \mathrm{s}, 6 \times \mathrm{Ac}$), $3.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.35-3.52(6 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}, \mathrm{Gal}$; $5-\mathrm{H}, \mathrm{G}$ al ; $5-\mathrm{H}, \mathrm{G}$ ald; $5-\mathrm{H}$ and $6-\mathrm{H}_{2}, \mathrm{Gal}^{\mathrm{a}}$), $3.80(1 \mathrm{H}$ ddd, J. 5 . $4.0,5-\mathrm{H}, \mathrm{M}$ an ${ }^{\mathrm{a}}$), 3.82-4.00 ($7 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{a}} ; 5-\mathrm{H}$ $\mathrm{Gal}^{\mathrm{b}} ; 6-\mathrm{H}_{2}, \mathrm{G}$ ald $; 3-\mathrm{H}$ and $6-\mathrm{H}_{2}, \mathrm{G}$ al $), 4.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.9,1-\mathrm{H}\right.$, Galc), $4.16\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6 \mathrm{a}} 7.0, J_{6 a, 6 b} 11.0,6-\mathrm{H}^{\mathrm{a}}, \mathrm{Gal} \mathrm{I}^{\mathrm{b}}\right), 4.23(1 \mathrm{H}$, $\mathrm{dd}^{\prime} \mathrm{J}_{6 a, 6 \mathrm{~b}} 11.8,6-\mathrm{H}^{\mathrm{a}}, \mathrm{M}^{\mathrm{an}}{ }^{\mathrm{a}}$), $4.29\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=9.5,4-\mathrm{H}\right.$, M an ${ }^{\mathrm{a}}$), $4.35\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5.6 \mathrm{~b}} 2.0,6-\mathrm{H}^{\mathrm{b}}, \mathrm{M}\right.$ an ${ }^{\mathrm{a}}$), 4.36 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5.6 \mathrm{~b}}$ $\left.6.0,6-\mathrm{H}^{\mathrm{b}}, \mathrm{Gal}^{\mathrm{b}}\right), 4.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.5,1-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}\right), 4.41(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}_{3,4} 3.5,3-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}$), $4.53\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1,2} 7.5,1-\mathrm{H}, \mathrm{G} \mathrm{al}{ }^{\mathrm{b}}\right), 4.61(1 \mathrm{H}$ d, J $\left.\mathrm{J}_{1,2} 7.5,1-\mathrm{H}, \mathrm{Gal}{ }^{\mathrm{a}}\right), 4.69$ and $4.72\left(2 \mathrm{H}, 2 \times \mathrm{dd}, \mathrm{J}_{\mathrm{H}, \mathrm{H}} 11.5, \mathrm{~J}_{\mathrm{H}, \mathrm{P}}\right.$ 8.0, CH ${ }_{2} \mathrm{Ph}$), $4.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.5,1-\mathrm{H}, \mathrm{M}\right.$ an$\left.^{\mathrm{a}}\right), 4.74(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{2,3} 10.0,2-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}\right), 4.80$ and $4.82\left(2 \mathrm{H}, 2 \times \mathrm{dd}, \mathrm{J}_{\mathrm{H}, \mathrm{H}} 11.5, \mathrm{~J}_{\mathrm{H}, \mathrm{P}}\right.$ 8.0, $\mathrm{CH}_{2} \mathrm{Ph}$), $4.98\left(1 \mathrm{H}, \mathrm{dd}_{2} \mathrm{~J}_{2,3} 10.0,2-\mathrm{H}, \mathrm{Gal}^{\mathrm{c}}\right.$), $5.08(1 \mathrm{H}, \mathrm{d}$, $4-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{d}}$), $5.11\left(1 \mathrm{H}, \mathrm{d}^{2} \mathrm{~J}_{3,4} 3.2,4-\mathrm{H}, \mathrm{Galc}\right), 5.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,3$ 9.8, 2-H , G al ${ }^{\mathrm{b}}$), $5.30\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}}^{2,3}\right.$. $\left.9.8,2-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{a}}\right), 5.44(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}_{2,3} 3.5,2-\mathrm{H}, \mathrm{M} \mathrm{an}^{\mathrm{a}}$), $5.53\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{3,4} 3.5,4-\mathrm{H}, \mathrm{G}\right.$ al$\left.{ }^{\mathrm{a}}\right), 5.62(1 \mathrm{H}$, dd, 3-H , M an ${ }^{\mathrm{a}}$, 5.63 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3,4} 3.0,4-\mathrm{H}, \mathrm{G}$ al ${ }^{b}$) and $6.80-8.01$ ($55 \mathrm{H}, \mathrm{m}, 11 \times \mathrm{Ph}$); $\delta_{\mathbf{p}}-3.69 ; \delta_{\mathrm{c}}$ see Table 2.

M ethyl 2,3,4,6-tetra-0-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 3$)4,6 -di- 0 -acetyl-2-0-benzoyl- β-D-galactopyranosyl-($1 \rightarrow 3$)-2,4,6-tri-0 -benzoyl- β-D-galactopyranosyl-($1 \rightarrow 3$)- \{2,4-di-0-benzoyl- β-D-galactopyranosyl 6 - $[2,3,4$-tri- 0 -benzoyl- $\beta-\mathrm{D}$ -galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-0 -benzoyl- α-D-mannopyranosyl phosphate]\}($1 \rightarrow 4$)-2,3,6-tri- 0 -benzoyl- α-d-mannopyranoside, triethylammonium salt 34
A mixture of compounds 3 ($55 \mathrm{mg}, 0.038 \mathrm{mmol}$) and $32(65 \mathrm{mg}$, 0.032 mmol) was dried by evaporation of pyridine ($3 \times 1 \mathrm{~cm}^{3}$) therefrom. The residue was dissolved in 9:1 pyridine-triethylamine ($1 \mathrm{~cm}^{3}$), trimethylacetyl chloride ($0.011 \mathrm{~cm}^{3}, 0.086$ mmol) was added, and the mixture was stirred at $22^{\circ} \mathrm{C}$ for 1 h , whereafter a freshly prepared solution of iodine ($20 \mathrm{mg}, 0.08$ $\mathrm{mmol})$ in 95% aq. pyridine ($2 \mathrm{~cm}^{3}$) was added. A fter 10 min , CHCl_{3} was added and the solution was washed successively with cold $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and cold $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ triethylammonium (TEA) hydrogen carbonate, dried by filtration through cotton wool, and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$, and 2% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added at $0^{\circ} \mathrm{C}$. A fter 1 min , the solution was diluted with CHCl_{3} and washed successively with ice-cold saturated aq. NaHCO_{3} and $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{M} \mathrm{eOH}-\right.$ $\mathrm{Et}_{3} \mathrm{~N}$ (98.9:0.1:1 $\longrightarrow 96: 3: 1$)] of the residue gave the heptasaccharide phosphate derivative 34 ($72 \mathrm{mg}, 71 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{20}+32\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{f}} 0.21$ (solvent E); δ_{H} (inter alia) $1.09\left(9 \mathrm{H}, \mathrm{t}, 3 \times \mathrm{M} \mathrm{eCH}_{2}\right)$, 1.41, 1.76, 1.86, 1.90 , 1.92 and $2.00(18 \mathrm{H}, 6 \times \mathrm{s}, 6 \times \mathrm{Ac}), 2.75\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{M} \mathrm{eCH} \mathrm{H}_{2}\right)$, $3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.11\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{1,2} 8.0,1-\mathrm{H}, \mathrm{Galc}\right), 4.39(1 \mathrm{H}$, d, J $\mathrm{J}_{1,2} 7.7,1-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{d}}$), $4.68\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{j}} \mathrm{J}_{1,2} 1.5,1-\mathrm{H}, \mathrm{M}\right.$ an ${ }^{\mathrm{a}}$), 4.72 (2 H, d, J 1,2 7.5, 1-H , Gala; 1-H, G al ${ }^{\text {b }}$), 4.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.9,1-\mathrm{H}$, $\mathrm{Ga}{ }^{\mathrm{e}}$), 5.55 ($1 \mathrm{H}, \mathrm{dd}_{1} \mathrm{~J}_{1,2} 1.5, \mathrm{~J}_{1, \mathrm{p}} 8.0,1-\mathrm{H}, \mathrm{M}$ an ${ }^{\mathrm{b}}$) and $6.95-7.95$ ($75 \mathrm{H}, \mathrm{m}, 15 \times \mathrm{Ph}$); δ_{c} see Table 2.

M ethyl β-D-galactopyranosyl-(1 $\rightarrow 3$)- β-D-galactopyranosyl$(1 \rightarrow 3)$ - β-D-galactopyranosyl-(1 $\rightarrow 3$)-(β-D-galactopyranosyl 6 -phosphate)-($1 \rightarrow 4$)- $\alpha-D$-mannopyranoside, bistriethylammonium salt 1

A solution of the protected phosphopentasaccharide derivative $33(120 \mathrm{mg})$ in 1:1 methanol-ethyl acetate $\left(6 \mathrm{~cm}^{3}\right)$ containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(73 \mathrm{mg})$ was stirred vigorously under a slight overpressure of hydrogen at room temperature for 3 h ; TLC (solvent D) then revealed that the starting material was completely consumed. The spent catalyst was filtered off with the aid of a Celite pad and the filtrate was concentrated. The residue was taken up in 1:1 methanol-1,4-dioxane ($5 \mathrm{~cm}^{3}$) and treated with $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOM}$ e in $\mathrm{MeOH}\left(3 \mathrm{~cm}^{3}\right)$ at $40^{\circ} \mathrm{C}$ for 24 h ; TLC (solvent F) then revealed the formation of a
single major product which was $U V$-inactive. The reaction mixture was deionized by passage through a short column of D owex 50W-X $4\left(\mathrm{H}^{+}\right)$resin, the eluate was neutralized with triethylamine ($1.5 \mathrm{~cm}^{3}$), and the solvents were removed under reduced pressure. The resulting residue was suspended in water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with toluene ($3 \times 10 \mathrm{~cm}^{3}$) to remove methyl benzoate and then the water was evaporated off to give the pentasaccharide phosphate $1(41 \mathrm{mg}, 70 \%)$ as an amorphous solid; $[a]_{D}^{21}+23$ (c 1.6, $\mathrm{H}_{2} \mathrm{O}$); $\mathrm{R}_{\mathrm{f}} 0.10$ (solvent F); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $1.25\left(18 \mathrm{H}, \mathrm{t}, 6 \times \mathrm{M} \mathrm{eCH}_{2}\right), 3.20(12 \mathrm{H}, \mathrm{q}$, $6 \times \mathrm{MeCH}_{2}$), $3.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}, 3 \mathrm{l}, 0.0,2-\mathrm{H}$, Gald $)$, $3.67\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{a}}\right.$), 3.72 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, \mathrm{Gal}{ }^{\mathrm{a}}$), 3.80 (2
 $3-\mathrm{H}, \mathrm{Gal}^{\mathrm{c}}$), 3.89 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{d}}$), 3.93 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3,4 \mathrm{3} .0,4-\mathrm{H}$, $\mathrm{Gal}{ }^{\mathrm{a}}$), $4.00\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}, 3 \mathrm{3} 3,2-\mathrm{H}, \mathrm{M}\right.$ an ${ }^{\mathrm{a}}$), $4.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}, 4,43.0$, $4-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}} ; 4-\mathrm{H}, \mathrm{G}$ al c , $4.28\left(1 \mathrm{H}, \mathrm{d}_{\mathrm{J}} \mathrm{J}_{3,4} 3.0,4-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}\right), 4.52$ (1 $\mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.9,1-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{a}}$), $4.62\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1,2} 7.1,1-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}\right), 4.69$ $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.8,1-\mathrm{H}, \mathrm{Gal}^{\mathrm{b}} ; 1-\mathrm{H}, \mathrm{Gal}^{\mathrm{c}}\right.$) and $4.77\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.5\right.$, 1-H , M an $\left.{ }^{\mathrm{a}}\right) ; \delta_{\mathrm{p}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ 1.78; δ_{c} see Table 2; ESM S(-) data: m/z 460.3 ($80 \%,\left[\mathrm{M}-2 \mathrm{Et}_{3} \mathrm{~N}-2 \mathrm{H}\right]^{2-}$), 921.0 ($100,[\mathrm{M}-$ $\left.2 \mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}$) and $942.9\left(3,\left[\mathrm{M}-2 \mathrm{Et}_{3} \mathrm{~N}-2 \mathrm{H}+\mathrm{Na}\right]^{-}\right)$ $\left(\mathrm{C}_{43} \mathrm{H}_{85} \mathrm{~N}_{2} \mathrm{O}_{29} \mathrm{P}\right.$ requires $\mathrm{M}, 1124.49$).

M ethyl β-D-galactopyranosyl-(1 $\rightarrow 3$)- β-D-galactopyranosyl($1 \rightarrow 3$) - β-D-galactopyranosyl- $(1 \rightarrow 3)-\{\beta-D$-galactopyranosyl 6 - $[\beta-$ D-galactopyranosyl-($1 \rightarrow 4$)- α-D-mannopyranosyl phosphate]\}

 ($1 \rightarrow 4$)- α-D-mannopyranoside, ammonium salt 2To a solution of compound $34(60 \mathrm{mg})$ in $\mathrm{M} \mathrm{eOH}\left(20 \mathrm{~cm}^{3}\right)$ was added $4.6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOM}$ ein $\mathrm{MeOH}\left(0.22 \mathrm{~cm}^{3}\right)$. The mixture was kept for 16 h at $1^{\circ} \mathrm{C}$ and was then deionized with D owex $50 \mathrm{~W}-\mathrm{X} 4\left(\mathrm{H}^{+}\right)$resin, filtered, and neutralized with $\mathrm{Et}_{3} \mathrm{~N}$. A fter concentration, water ($5 \times 10 \mathrm{~cm}^{3}$) was evaporated off from residue to remove methyl benzoate; TLC (solvent F) then revealed the formation of three $U \mathrm{~V}$-active products ($\mathrm{R}_{\mathrm{f}} 0.30-0.45$). The residue was taken up in $1 \% \mathrm{NaOH}$ in $4: 1 \mathrm{M} \mathrm{eOH}$-water $\left(7 \mathrm{~cm}^{3}\right)$, the resulting solution was kept at $20^{\circ} \mathrm{C}$ for 7 h and then was deionized as described above Ion-exchange chromatography of the residue on a column ($24 \times 1 \mathrm{~cm}$) of Fractogel TSK DEAE650 (S) (HCO_{3}^{-}form) (M erck) eluted with a linear gradient of aq. $\mathrm{NH}_{4} \mathrm{HCO}_{3}\left(0 \longrightarrow 0.3 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ at $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ gave the heptasaccharide phosphate 2 ($18 \mathrm{mg}, 75 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{20}+37\left(c 1.5, \mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{R}_{\mathrm{f}} 0.23$ (solvent F); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3,4} 3.0,4-\mathrm{H}, \mathrm{G}\right.$ al ${ }^{\mathrm{a}} ; 4-\mathrm{H}$, $\mathrm{Gal}{ }^{\mathrm{e}}$), $3.99\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, \mathrm{M}\right.$ an ${ }^{\mathrm{a}}$), $4.02\left(1-\mathrm{H}, \mathrm{m}, 2-\mathrm{H}, \mathrm{M}\right.$ an ${ }^{\mathrm{b}}$), $4.19\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3,43.0,4-\mathrm{H}, \mathrm{G} \mathrm{al}^{\mathrm{b}} ; 4-\mathrm{H}, \mathrm{Galc}^{\mathrm{c}}\right), 4.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3,43.0$, $4-\mathrm{H}, \mathrm{Gal}^{\mathrm{d}}$), $4.38\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.3,1-\mathrm{H}, \mathrm{Gal}^{\mathrm{e}}\right.$), $4.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2}\right.$ 7.3, 1-H, G al ${ }^{\mathrm{a}}$), $4.60\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 7.0,1-\mathrm{H}, \mathrm{G}\right.$ ald $), 4.67(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}_{1,2} 7.3,1-\mathrm{H}, \mathrm{G}$ al'; $1-\mathrm{H}, \mathrm{G}$ al ${ }^{\mathrm{c}}$), 4.77 ($1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{1,2} 1.5,1-\mathrm{H}, \mathrm{M}$ an ${ }^{\mathrm{a}}$) and $5.42\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1,2} 1.5, \mathrm{~J}_{1, \mathrm{p}} 7.8,1-\mathrm{H}, \mathrm{M} \text { an }{ }^{\mathrm{b}}\right)^{2} \delta_{\mathrm{p}}\left(\mathrm{D}_{2} \mathrm{O}\right)-1.28$; δ_{c} see Table 2; ESM S(-) data: m/z $622.3\left(96 \%,\left[\mathrm{M}-\mathrm{NH}_{3}-\right.\right.$ $2 \mathrm{H}]^{2-}$), $640.2\left(100,\left[\mathrm{M}-\mathrm{NH}_{3}-3 \mathrm{H}+\mathrm{K}\right]^{2-}\right.$) and 1244.9 (93, $\left[\mathrm{M}-\mathrm{NH}_{3}-\mathrm{H}^{-}\right)\left(\mathrm{C}_{43} \mathrm{H}_{78} \mathrm{NO}_{39} \mathrm{P}\right.$ requires M , 1263.39). Also isolated was the pentasaccharide phosphate 1 (bisammonium salt; $4 \mathrm{mg}, 22 \%$).

Acknowledgements

The research of A. V. N. was supported by a Wellcome Trust International Grant and by an International Research Scholar's award from the Howard Hughes M edical Institute. One of us (G. M. W.) thanks the BBSRC for the award of a studentship.

R eferences

1 Part 5, A. V. Nikolaev, T. J. Rutherford, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1996, 1559.

2 A. V. Nikolaev, T. J. Rutherford, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1995, 1977.

3 A. V. Nikolaev, J. A. Chudek and M. A. J. Ferguson, C arbohydr. Res., 1995, 272, 179.

4 M. J. M cConville, J. E. Thomas-Oates, M. A. J. Ferguson and S. W. H omans, J. Biol. C hem., 1990, 265, 19611.

5 M. J. M cConville, S. J. Turco, M. A. J. Ferguson and D. L. Sacks, EM BO J., 1992, 11, 3593.
6 P. F. P. Pimenta, S. J. Turco, M. J. McConville, P. G. Lawyer, P. V. Perkins and D. L. Sacks, Science, 1992, 256, 1812.

7 P. F. P. Pimenta, E. M. B. Saraiva, E. Rowton, G. B. M odi, L. A . Garraway, S. M. Beverley, S. J. Truco and D. L. Sacks, Proc. N atl. A cad. Sci. U SA, 1994, 91, 9155.
8 M. K elleher, A. Bacic and E. H andman, P roc. NatI. A cad. Sci. USA, 1992, 89, 6
9 R. R. Schmidt, A ngew. C hem., Int. Ed. Engl., 1986, 25, 212.
10 R. R. Schmidt, in Carbohydrates-Synthetic M ethods and Application in M edicinal Chemistry, ed. H. Ogura, A. H asegawa and T. Suami, K odansha (Tokyo)/VCH (Weinheim), 1992, pp. 66-88.

11 V. V. Bencomo, J.-C. Jacquinet and P. Sinaij, C arbohydr. Res., 1982, 110, c9.
12 P. K ováč, R.B. Taylor and C. P. J. Glaudemans, J. Org. Chem., 1985, 50, 5323.
13 T. Ziegler, B. A dams, P. K ováč and C. P. J. Glaudemans, J. C arbohydr. Chem., 1990, 9, 135.
14 J. M. Williams and A. C. R ichardson, Tetrahedron, 1967, 23, 1369.
15 A. V. Nikolaev, I. A. Ivanova and V. N. Shibaev, C arbohydr. Res., 1993, 242, 91.
16 A. H asegawa, K. A dachi, M. Yoshida and M. K iso, C arbohydr. Res., 1992, 230, 273.

17 C. W. Slife, M. A . N ashed and L. A nderson, C arbohydr. Res., 1981, 93, 219.
18 G. Yang, F. K ong and S. Zhou, C arbohydr. Res., 1991, 211, 179.
19 K. Jansson, S. A hlfors, T. Frejd, J. K ihlberg and G. M agnusson, J. Org. C hem., 1988, 53, 5629.

20 P. K ováč, H. J. C. Yeh and C. P. J. Glaudemans, C arbohydr. Res., 1985, 140, 277.
21 S. H anessian and P. L avallee, C an. J. Chem., 1975, 53, 2975.
22 S. L. Beaucage and M. N. Caruthers, Tetrahedron Lett., 1981, 22, 1859.

23 A. D. Barone, J.-Y. Tang and M. N. Caruthers, N ucleic A cids Res., 1984, 12, 4051.
24 T. Tanaka, S. Tamatsukuri and T. Ikehara, Tetrahedron Lett., 1986, 27, 199.
25 E. U hlmann and J. Engels, Tetrahedron Lett., 1986, 27, 1023.
26 B. A. Dmitriev, A. V. Nikolaev, A. S. Shashkov and N. K. K ochetkov, C arbohydr. Res., 1982, 100, 195.
27 F.-I. Auzanneau, F. Forooghian and B. M. Pinto, C arbohydr. Res., 1996, 291, 21.
28 A. V. Nikolaev, I. A. Ivanova, V. N. Shibaev and N. K. K ochetkov, Sov. J. Bioorg. Chem. (E ngl. Transl.), 1990, 16, 376.

Paper 6/03800
Received 31st M ay 1996
A ccepted 16th O ctober 1996

